Skip to main content

Advertisement

Log in

Machine Learning Techniques and Breast Cancer Prediction: A Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cancer is one of the most prevalent diseases in humans, both in terms of incidence and fatality. Cancer care is a growing area of focus for developing interventions to improve the overall quality of life and longevity. Physical exercise has been continuously identified as a critical component of rehabilitation for a variety of chronic conditions and has been shown to improve first-class lifestyles and decrease all-cause mortality. Recent observational research suggests that moderate amounts of physical activity may also reduce the probability of dying from cancer, implying that exercise may be a beneficial strategy to improve not only exceptional but also standard survival. The classification of cancer modalities using machine learning modeling has been extensively discussed in this research work. This work helps contemporary and future researchers to build a foundation and conceptualize the technological factors involved in cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Latest global cancer data, World Health Organization (IARC), 2018.

  2. World Health Organization. Global Health Observatory. Geneva: World Health Organi- zation; 2018. who.int/gho/database/en/. Accessed June 21, 2018.

  3. https://seer.cancer.gov/statfacts/html/all.html

  4. https://www.healthline.com/health/history-of-breast-cancer.

  5. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality world- wide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  6. Kaur, R., & Sinha, A. K. (2013). Green revolution and its impact on health: An analysis. Global warming, human factors and environment: Anthropological perspectives, pp. 264–273.

  7. Bharathi, A. K. (2014). Investigation on Cancer Classification Using Machine Learning Approaches. Journal of biomaterials and tissue engineering, 4, 492–500.

    Article  Google Scholar 

  8. Saleh, D. T., Attia, A. & Shaker, O. (2016) Studying Combined Breast Cancer biomarkers using Machine Learning techniques. In 2016 IEEE 14TH International symposium on applied machine intelligence and informatics (SAMI) (pp. 247-251.)

  9. Jin, X., Xu, A., Bie, R., Guo, P., Li, J., Yang, Q., & Tan, A. H. (Eds.) (2006). Machine learning techniques and Chi-square feature selection for cancer classification using SAGE gene expression profiles. In Data mining for biomedical applications, proceedings (vol. 3916, pp. 106–115).

  10. Yoo, C., & Gernaey, K. V. (2008). Classification and diagnostic output prediction of cancer using gene expression profiling and supervised machine learning algorithms. Journal of Chemical Engineering of Japan, 41, 898–914.

    Article  Google Scholar 

  11. Firoozbakht, F., Rezaeian, I., Porter, L. & Rueda, L. (2014). Breast cancer subtype identifi- cation using machine learning techniques. In 2014 IEEE 4TH International conference on computational advances in bio and medical sciences (ICCABS).

  12. Jeon, J., Nim, S., Teyra, J., Datti, A., Wrana, J. L., Sidhu, S. S., et al. (2014). A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Medicine, 6, 1–18.

    Article  Google Scholar 

  13. Asri, H., Mousannif, H., Al Moatassime, H., & Noel, T. (2016). Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Computer Science, 83, 1064–1069.

    Article  Google Scholar 

  14. Eshlaghy, A. T., Poorebrahimi, A., Ebrahimi, M., Razavi, A. R., & Ahmad, L. G. (2013). Using three ma- chine learning techniques for predicting breast cancer recurrence. Journal of Health and Medical Informatics, 4, 124.

    Google Scholar 

  15. https://machinelearningmastery.com/linear-regression-for-machine-learning/.

  16. https://machinelearningmastery.com/logistic-regression-for-machine-learning/.

  17. Fadzil, A., Isa, N. A. M., Hussain, Z., Osman, M. K., & Sulaiman, S. N. (2015). A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Analysis and Applications, 18(4), 861–870.

    Article  MathSciNet  Google Scholar 

  18. Dubey, A. K., Gupta, U., & Jain, S. (2016). Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. International journal of computer assisted radiology and surgery, 11(11), 2033–2047.

    Article  Google Scholar 

  19. Ding, C., & He, X. (2004, July). K-means clustering via principal component analysis. In Proceedings of the twenty-first international conference on Machine learning (p. 29). ACM.

  20. Kramer, M. A. (1992). Autoassociative neural networks. Computers & chemical engi- neering, 16(4), 313–328.

    Article  Google Scholar 

  21. Paterek, A. (2007, August). Improving regularized singular value decomposition for collaborative filtering. In Proceedings of KDD cup and workshop (Vol. 2007, pp. 5-8).

  22. Scholkopf, B., Smola, A., & Müller, K. R. (1997, October). Kernel principal component analysis. In International conference on artificial neural networks (pp. 583-588). Springer, Berlin, Heidelberg.

  23. Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 2(4)). Cambridge: MIT press.

    MATH  Google Scholar 

  24. Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.

    MATH  Google Scholar 

  25. https://machinelearningmastery.com/what-is-deep-learning/

  26. Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17.

    Article  Google Scholar 

  27. Abonyi, J., & Szeifert, F. (2003). Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters, 24(14), 2195–2207.

    Article  MATH  Google Scholar 

  28. Listgarten, J., Damaraju, S., Poulin, B., Cook, L., Dufour, J., Driga, A., et al. (2004). Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clinical Cancer Research, 10, 2725–37.

    Article  Google Scholar 

  29. Polat, K., & Güneş, S. (2007). Breast cancer diagnosis using least square support vector machine. Digital Signal Processing, 17(4), 694–701.

    Article  Google Scholar 

  30. Khan, M. U., Choi, J. P., Shin, H., & Kim, M. (2008, August). Predicting breast cancer survivability using fuzzy decision trees for personalized healthcare. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5148-5151). IEEE.

  31. Akay, M. F. (2009). Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications, 36(2), 3240–3247.

    Article  Google Scholar 

  32. Jerez, J. M., Molina, I., Garcia-Laencina, P. J., Alba, E., Ribelles, N., Martin, M., & Franco, L. (2010). Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artificial Intelligence in Medicine, 50, 105–115.

    Article  Google Scholar 

  33. Osareh, A., & Shadgar, B. (2010). Machine learning techniques to diagnose breast cancer. In 2010 5th International Symposium on Health Informatics and Bioinformatics (pp. 114-120). IEEE.

  34. Ayer, T., Alagoz, O., Chhatwal, J., Shavlik, J. W., Kahn, C. E., & Burnside, E. S. (2010). Breast cancer risk es- timation with artifical neural networks revisited. Cancer, 116, 3310–21.

    Article  Google Scholar 

  35. Hsieh, S. L., Hsieh, S. H., Cheng, P. H., Chen, C. H., Hsu, K. P., Lee, I. S., & Lai, F. (2012). Design ensemble machine learning model for breast cancer diagnosis. Journal of Medical Systems, 36(5), 2841–2847.

    Article  Google Scholar 

  36. Kim, W., Kim, K. S., Lee, J. E., Noh, D.-Y., Kim, S.-W., Jung, Y. S., et al. (2012). Development of novel breast cancer recurrence prediction model using support vector machine. Journal of Breast Cancer, 15, 230–8.

    Article  Google Scholar 

  37. Nguyen, T., Khosravi, A., Creighton, D., & Nahavandi, S. (2015). Medical data classification using interval type-2 fuzzy logic system and wavelets. Applied Soft Computing, 30, 812–822.

    Article  Google Scholar 

  38. Zheng, B., Yoon, S. W., & Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications, 41(4), 1476–1482.

    Article  Google Scholar 

  39. Ahmad, F., Isa, N. A. M., Hussain, Z., Osman, M. K., & Sulaiman, S. N. (2015). A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Analysis and Applications, 18(4), 861–870.

    Article  MathSciNet  Google Scholar 

  40. Montazeri, M., Montazeri, M., Montazeri, M., & Beigzadeh, A. (2016). Machine learn- ing models in breast cancer survival prediction. Technology and Health Care, 24(1), 31–42.

    Article  Google Scholar 

  41. Karabatak, M. (2015). A new classifier for breast cancer detection based on Näıve Bayesian. Measurement, 72, 32–36.

    Article  Google Scholar 

  42. Pawar, M. M., & Talbar, S. N. (2016). Genetic fuzzy system (GFS) based wavelet co- occurrence feature selection in mammogram classification for breast cancer diagnosis. Perspectives in Science, 8, 247–250.

    Article  Google Scholar 

  43. Mohebian, M. R., Marateb, H. R., Mansourian, M., Mañanas, M. A., & Mokarian, F. (2017). A hybrid computer-aided-diagnosis system for prediction of breast cancer recurrence (HPBCR) using optimized ensemble learning. Computational and Structural Biotechnology Journal, 15, 75–85.

    Article  Google Scholar 

  44. Shirazi, A. Z., Chabok, S. J. S. M., & Mohammadi, Z. (2018). A novel and reliable computational intelligence system for breast cancer detection. Medical & Biological Engineering & Computing, 56(5), 721–732.

    Article  Google Scholar 

  45. Amrane, M., Oukid, S., Gagaoua, I., & Ensari, T. (2018). Breast cancer classifica- tion using machine learning. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) (pp. 1–4). IEEE.

  46. Khuriwal, N., & Mishra, N. (2018, March). Breast cancer diagnosis using adaptive vot- ing ensemble machine learning algorithm. In 2018 IEEMA Engineer Infinite Conference (eTechNxT) (pp. 1–5). IEEE.

  47. Alickovic, E., & Subasi, A. (2019). Normalized Neural Networks for Breast Cancer Classification. In International Conference on Medical and Biological Engineering (pp. 519-524). Springer, Cham.

  48. Ferroni, P., Zanzotto, F. M., Riondino, S., Scarpato, N., Guadagni, F., & Roselli, M. (2019). Breast cancer Prognosis using a machine learning approach. Cancers, 11(3), 328.

    Article  Google Scholar 

  49. Goyal, K., Sodhi, P., Aggarwal, P., & Kumar, M. (2019). Comparative Analysis of Machine Learning Algorithms for Breast Cancer Prognosis. In Proceedings of 2nd In- ternational Conference on Communication, Computing and Networking (pp. 727-734). Springer, Singapore.

  50. Khan, S., Islam, N., Jan, Z., Din, I. U., & Rodrigues, J. J. C. (2019). A novel deep learning based framework for the detection and classification of breast cancer using trans- fer learning. Pattern Recognition Letters, 125, 1–6.

    Article  Google Scholar 

  51. Omondiagbe, D. A., Veeramani, S., and Sidhu, A. S. (2019). Machine learning classification techniques for breast cancer diagnosis. In IOP Conference Series: Mate- rials Science and Engineering (Vol. 495, No. 1, p. 012033). IOP Publishing.

  52. Nematzadeh, Z., Ibrahim, R., & Selamat, A. (2015). Comparative studies on breast cancer classifications with K-fold cross validations using machine learning techniques. In 2015 10TH Asian control conference (ASCC), IEEE.

  53. Polat, K., & Sentürk, U. (2018). A novel ML approach to prediction of breast cancer: combining of mad normalization, KMC based feature weighting and Ad- aBoostM1 classifier. In 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1–4). IEEE.

  54. Criz, J. A., & Wishart, D. S. (2006). Applications of machine learning in cancer prediction and prog- nosis. Cancer Informat, 2, 59.

    Google Scholar 

  55. Park, C., Ahn, J., Kim, H., & Park, S. (2014). Integrative gene network construction to analyze cancer recurrence using semi-supervised learning. PLoS One, 9, e86309.

    Article  Google Scholar 

  56. Dheeba, J., Singh, N. A., & Selvi, S. T. (2014). Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. Journal of Biomedical Informatics, 49, 45–52.

    Article  Google Scholar 

  57. Alarabeyyat, A., & Alhanahnah, M. (2016). Breast cancer detection using k-nearest neighbor machine learning algorithm. In 2016 9th International Conference on Developments in eSystems Engineering (DeSE) (pp. 35-39). IEEE.

  58. Togacar, M., & Ergen, B. (2018, September). Deep learning approach for classification of breast cancer. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (pp. 1–5). IEEE.

  59. Hamilton, H. J., Cercone, N., & Shan, N. (1996). RIAC: a rule induction algorithm based on approximate classification. Computer Science Department, University of Regina.

  60. Nauck, D., & Kruse, R. (1997). A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems, 89(3), 277–288.

    Article  MathSciNet  Google Scholar 

  61. Örkcü, H., & Bal, H. (2011). Comparing performances of backpropagation and genetic algorithms in the data classification. Expert Systems with Applications, 38(4), 3703–3709.

    Article  Google Scholar 

  62. Stoean, R., & Stoean, C. (2013). Modeling medical decision making by support vector ma chines, explaining by rules of evolutionary algorithms with feature selection. Expert Systems with Applications, 40(7), 2677–2686.

    Article  MathSciNet  Google Scholar 

  63. Malmir, H., Farokhi, F. & Sabbaghi-nadooshan, R. (2013). Optimization of data mining with evolutionary algorithms for cloud computing application. In Computer and Knowledge Engineering (ICCKE), 2013 3th International eConference on. IEEE (pp. 343-347).

  64. Nemissi, M., Salah, H., & Seridi, H. (2018). Breast cancer diagnosis using an enhanced Extreme Learning Machine based-Neural Network. In 2018 International Conference on Signal, Image, Vision and their Applications (SIVA) (pp. 1–4). IEEE.

  65. Osareh, A., & Shadgar, B. (2010). Machine learning techniques to diagnose breast cancer. In 2010 5th International Symposium on Health Informatics and Bioinformatics (pp. 114–120). IEEE.

  66. Saranyaraj, D., Manikandan, M., & Maheswari, S. (2020). A deep convolutional neural network for the early detection of breast carcinoma with respect to hyper-parameter tuning. Multimedia Tools and Applications, 79(15–16), 11013–11038.

  67. Abreu, P. H., Santos, M. S., Abreu, M. H., Andrade, B., & Silva, D. C. (2016). Predicting breast cancer recurrence using machine learning techniques. ACM Computing Surveys, 49(3), 1–40. https://doi.org/10.1145/2988544.

    Article  Google Scholar 

  68. Lotsch, J., Sipila, R., Tasmuth, T., Kringel, D., Estlander, A. M., Meretoja, T., & Ultsch, A. (2018). Machine-learning-derived classifier predicts absence of persistent pain after breast cancer surgery with high accuracy. Breast Cancer Research and Treatment, 171(2), 399–411.

    Article  Google Scholar 

  69. Yadav, A., Jamir, I., Jain, R. R. & Sohani, M. (2019). Comparative study of machine learning algorithms for breast cancer prediction–a review. International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 5 Issue 2, pp. 979–985, March–April 2019

  70. Singireddy, S., Alkhateeb, A., Rezaeian, I., Rueda, L., Cavallo-Medved, D., & Porter, L. (2015). Identifying differentially expressed transcripts associated with prostate cancer progression using RNA-Seq and machine learning techniques. In IEEE Conference on computational intelligence in bioinformatics and computational biology (CIBCB), (pp. 369–373)

  71. Zhang, X., Li, Y., & Liu, D. (2019). Effects of exercise on the quality of life in breast cancer patients: a systematic review of randomized controlled trials. Supportive Care in Cancer, 27, 9–21.

    Article  Google Scholar 

  72. Anastasi, N., & Lusher, J. (2019). The impact of breast cancer awareness interventions on breast screening uptake among women in the United Kingdom: A systematic review. Journal of Health Psychology, 24, 113–124.

    Article  Google Scholar 

  73. Ganju, R. G., TenNapel, M., Chen, A. M., & Mitchell, M. (2019). Impact of peer review on use of hypofractionated regimens for early-stage breast cancer for patients at a tertiary care academic medical center and its community-based affiliates. Journal of Oncology Practice, 15, e153–e161.

    Article  Google Scholar 

  74. Zhang, Q., Zhao, H., & Zheng, Y. (2019). Effectiveness of mindfulness-based stress reduction (MBSR) on symptom variables and health-related quality of life in breast cancer patientsa systematic review and meta-analysis. Supportive Care in Cancer, 27, 771–781.

    Article  Google Scholar 

  75. Vaka, A. R., Soni, B., & Reddy, S. (2020). Breast cancer detection by leveraging Machine Learning. ICT Express, 6(4), 320–324.

    Article  Google Scholar 

  76. Islam, M. M., et al. (2020). Breast cancer prediction: A comparative study using machine learning techniques. SN Computer Science, 1(5), 1–14.

    Google Scholar 

  77. Chaurasia, Vikas, & Pal, Saurabh. (2020). Applications of machine learning techniques to predict diagnostic breast cancer. SN Computer Science, 1(5), 1–11.

    Google Scholar 

  78. Mohammed, S. A. et al. (2020). Analysis of breast cancer detection using different machine learning techniques. In International Conference on Data Mining and Big Data. Springer, Singapore

  79. Hooda, N., Gupta, R., & Gupta, N. R. (2022). Prediction of malignant breast cancer cases using ensemble machine learning: A case study of pesticides prone area. In IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(20), 1096–1104. https://doi.org/10.1109/TCBB.2020.3033214.

  80. Houssein, E. H., et al. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161.

    Article  Google Scholar 

  81. Li, J., et al. (2021). Predicting breast cancer 5-year survival using machine learning: A systematic review. PloS one, 16(4), e0250370.

    Article  Google Scholar 

  82. Wu, J., & Hicks, C. (2021). Breast cancer type classification using machine learning. Journal of Personalized Medicine, 11(2), 61.

    Article  Google Scholar 

  83. Chugh, G., Kumar, S. & Singh, N. (2021). Survey on Machine Learning and Deep Learning Applications in Breast Cancer Diagnosis. Cogn Comput, 13, 1451–1470 (2021). https://doi.org/10.1007/s12559-020-09813-6

  84. Alzu’bi, A., et al. (2021). Predicting the recurrence of breast cancer using machine learning algorithms. Multimedia Tools and Applications, 80(9), 13787–13800.

    Article  Google Scholar 

  85. Boumaraf, S., et al. (2021). Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation. Diagnostics, 11(3), 528.

    Article  Google Scholar 

  86. Meenalochini, G., & Ramkumar, S. (2021). Survey of machine learning algorithms for breast cancer detection using mammogram images. Materials Today: Proceedings, 37, 2738–2743.

    Google Scholar 

  87. Khorshid, S. F., & Abdulazeez, A. M. (2021). Breast cancer diagnosis based on k-nearest neighbors: A review. PalArch’s Journal of Archaeology of Egypt/Egyptology, 18(4), 1927–1951.

    Google Scholar 

  88. Nadarajan, R., & Sulaiman, N. (2021). Comparative analysis in execution of machine learning in breast cancer identification: A review. In Journal of Physics: Conference Series. Vol. 1874(1). IOP Publishing

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gagandeep Kaur or Ruchika Gupta.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Gupta, R., Hooda, N. et al. Machine Learning Techniques and Breast Cancer Prediction: A Review. Wireless Pers Commun 125, 2537–2564 (2022). https://doi.org/10.1007/s11277-022-09673-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09673-3

Keywords

Navigation