Skip to main content
Log in

Performance of Smart Antenna Under Different Fading Conditions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Optimizing the current distribution of an evenly spaced antenna array has shown to be an efficient approach for reducing side lobe levels. In this article, the Tchebyscheff distribution-based antenna array synthesis approach is combined with an adaptive signal processing algorithm for beamforming and side lobe level reduction in smart antennas in various fading situations. The performance of smart antennas in uniformly spaced linear, planar, circular, and semi-circular arrays are evaluated. The presence of Rayleigh and Rician channels is examined in the network. The least mean square (LMS) and normalised least mean square (NLMS) algorithms are applied as adaptive algorithms. In fading environments, the NLMS algorithm with Tchebyscheff distribution outperforms than the LMS algorithm with Tchebyscheff distribution, with a side lobe level decrease of 11.23 dB. The lowest side lobe achieved with the NLMS algorithm with Tchebyscheff distribution is − 45.59 dB for uniform planar array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Herscovici, N., & Christodoulou, C. (2000). Smart antenna. IEEE, Antenna and Propagation Magazine, 42(3), 66.

    Google Scholar 

  2. Gross, F. (2005). Smart antenna for wireless communication. McGraw-Hill.

  3. Poormohammad, S., & Farzaneh, F. (2019). Proposed 2D and 3D geometries intended for smart antenna applications, including direction finding and beam-forming implementation. IET Radar, Sonar & Navigation, 13(5), 673–681.

    Article  Google Scholar 

  4. Adnan, N. H. M., Md. Rafiqul, I., & Zahirul Alam, A. H. M. (2017). Effects of inter element spacing on large antenna array characteristics. In 4th IEEE international conference on smart instrumentation, measurement and applications (ICSIMA), 28–30 November 2017, Putrajaya, Malaysia.

  5. Kutty, S., & Sen, D. (2015). Beamforming for millimeter wave communications: An inclusive survey. IEEE Communications Surveys & Tutorials, 18(2), 949–973.

    Article  Google Scholar 

  6. Wanga, X., Aminb, M., & Wang, X. (2018). Robust sparse array design for adaptive beam-forming against DOA mismatch. Signal Processing, 146, 41–49.

    Article  Google Scholar 

  7. Saeed, M. O., & Zerguine, A. (2013). A variable step size strategy for sparse system identification. In 10th International multi-conferences on systems, signals & devices 2013 (SSD13) (pp. 1–4). IEEE.

  8. Iqbal, N., Bashir, M., & Zerguine, A. (2018). Convex combination of transform domain LMS and sparse LMS. In 2018 52nd Asilomar conference on signals, systems, and computers (pp. 1726–1729). IEEE.

  9. Choi, Y. S., Kim, S. E., & Song, W. J. (2012). Noise-robust normalised subband adaptive filtering. Electronics Letters, 48(8), 432–434.

    Article  Google Scholar 

  10. Senapati, A., Ghatak, K., & Roy, J. S. (2015). A comparative study of adaptive beam-forming techniques in smart antenna using LMS algorithm and its variants. In International conference on computational intelligence and networks (CINE-2015), KIIT University, Bhubaneswar, January 12–13, 2015.

  11. Zhao, W., Lin, J. Q., Chan, S. C., & So, H.K.-H. (2018). A division-free and variable-regularized LMS-based generalized sidelobe canceller for adaptive beamforming and its efficient hardware realization. IEEE Access, 66, 64470–64485.

    Article  Google Scholar 

  12. Zaman, F. (2017). Joint angle-amplitude estimation for multiple signals with lstructured arrays using bioinspired computing. Wireless Communications and Mobile Computing, 2017, 9428196. https://doi.org/10.1155/2017/9428196

    Article  Google Scholar 

  13. Couceiro, M. S., Rocha, R. P., Ferreira, N. M. F., & Machado, J. A. T. (2012). Introducing the fractional-order Darwinian PSO. Signal, Image Video Processing, 6(3), 343–350.

    Article  Google Scholar 

  14. Aslam, M. S., & Raja, M. A. Z. (2015). A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach. Signal Processing, 107, 433–443.

    Article  Google Scholar 

  15. Chan, S. C., & Chu, Y. J. (2016). A new variable-regularized transform-domain NLMS algorithm with automatic step-size selection for adaptive system identification/filtering. Journal of Signal Processing Systems, 84(2), 181–196.

    Article  Google Scholar 

  16. Tao, J.-W., & Chang, W.-X. (2014). Adaptive beam-forming based on complex quaternion processes. Mathematical Problems in Engineering, 291249, 1–10.

    Google Scholar 

  17. Hajiabadi, M., Radmanesh, H., & Samkan, M. (2019). Robust adaptive beam-forming in impulsive noise environments. IET Radar, Sonar & Navigation, 13(12), 2145–2150.

    Article  Google Scholar 

  18. Huang, J., Su, H., & Yang, Y. (2020). Robust adaptive beam-forming for MIMO radar in the presence of covariance matrix estimation error and desired signal steering vector mismatch. IET Radar, Sonar & Navigation, 14(1), 118–126.

    Article  Google Scholar 

  19. Senapati, A., & Roy, J. S. (2017). Adaptive beamforming in smart antenna using Tchebyscheff distribution and variants of least mean square algorithm. Journal Of Engineering Science and Technology, 6, 66.

    Google Scholar 

  20. Tohidi, E., Sebt, M. A., & Nayebi, M. M. (2013). Linear array thinning using iterative FFT plus soft decision. In 2013 14th International radar symposium (IRS) (vol. 1, pp. 301–306). IEEE.

  21. Gabrielli, L. H., & Hernandez-Figueroa, H. E. (2016). Aperiodic antenna array for secondary lobe suppression. IEEE Photonics Technology Letters, 28(2), 209–212.

    Article  Google Scholar 

  22. Zhao, L., Xu, J., Ding, J., Liu, A., & Li, L. (2017). Direction-of-arrival estimation of multipath signals using independent component analysis and compressive sensing. PLoS ONE, 12(7), e0181838.

    Article  Google Scholar 

  23. Mukherjee, S., Das, S. S., Chatterjee, A., & Chatterjee, S. (2017). Analytical calculation of rician K-factor for indoor wireless channel models. IEEE Access, 5, 19194–19212.

    Article  Google Scholar 

  24. Noordin, N. H., Zuniga, V., El-Rayis, A. O., Haridas, N., Erdogan, A. T., & Arslan, T. (2011). Uniform circular arrays for phased array antenna. In 2011 Loughborough antennas & propagation conference (pp. 1–4). IEEE.

  25. Karthika, K., & Kavitha, K. (2021). Reconfigurable antennas for advanced wireless communications: A review. Wireless Personal Communications, 6, 66. https://doi.org/10.1007/s11277-021-08555-4

    Article  Google Scholar 

  26. Phan-Huy, D.-T., Sternad, M., & Svensson, T. (2015). Making 5G adaptive antennas work for very fast moving vehicles. IEEE Intelligent Transportation Systems Magazine, 7(2), 71–84.

    Article  Google Scholar 

  27. Sun, G., Liu, Y., Li, H., Liang, S., Wang, A., & Li, B. (2018). An antenna array sidelobe level reduction approach through invasive weed optimization. International Journal of Antennas and Propagation, 2018, 4867851. https://doi.org/10.1155/2018/4867851

    Article  Google Scholar 

  28. Sarker, M. A., Hossain, M. S., & Masud, M. S. (2016). Robust beam-forming synthesis technique for low side lobe level using Taylor excited antenna array. In 2016 2nd International conference on electrical, computer & telecommunication engineering (ICECTE), Rajshahi, Bangladesh (pp. 1–4).

  29. Sun, G., Liu, Y., Li, H., Liang, S., Wang, A., & Li, B. (2020). An antenna array sidelobe level reduction approach through invasive weed optimization. International Journal of Antennas and Propagation, 6, 66.

    Google Scholar 

  30. Rappaport, T. S. (2010). Wireless communications, principles & practice (2nd ed.). Prentice-Hall.

  31. Balanis, C. A. (2016). Antenna theory—Analysis and design (4th ed.). Wiley.

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriangkrai Sooksood.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, A., Patro, B.S., Sooksood, K. et al. Performance of Smart Antenna Under Different Fading Conditions. Wireless Pers Commun 124, 1493–1509 (2022). https://doi.org/10.1007/s11277-021-09417-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09417-9

Keywords

Navigation