Skip to main content

Advertisement

Log in

A Comprehensive Survey of Emergency Communication Network and Management

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The performance of wireless communication network is important in emergency rescue operations while ensuring optimum usage of limited wireless resources. Due to the disruption of normal wireless communication in a post-disaster scenario, the sustenance of an emergency communication network plays a significant role in relief operations. Under such a scenario, it becomes crucial to monitor the performance and reliability of the protocol in a time-bound manner. Some of the prominent challenges faced by the communication network during this period are related to energy efficiency, resources allocation, reliable connectivity, QoS, network throughput, and interoperability. A comprehensive performance appraisal of the emergency network considering the above-mentioned aspects is extremely important. This review provides a comprehensive survey of the widely used communication technologies applied for setting up an emergency communication network to mitigate the post disaster aftermath. The article also delivers an overview of the integration of new technologies with the existing standards for improving the performance of the disaster communication networks. Finally, we propose some promising solutions to overcome the limitations of existing emergency communication technologies to improve the overall network performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arbia, D. B., Alam, M. M., Attia, R., Hamida, E. B., & Kadri, A. (2017). CROW 2: Internet of humans-based platform for disaster relief and emergency communication. In 2017 14th IEEE annual consumer communications & networking conference (CCNC) (pp. 578–579). IEEE.

  2. Tran, P. N., & Saito, H. (2016). Enhancing physical network robustness against earthquake disasters with additional links. Journal of Lightwave Technology, 34(22), 5226–5238.

    Article  Google Scholar 

  3. Sakano, T., Fadlullah, Z. M., Ngo, T., Nishiyama, H., Nakazawa, M., Adachi, F., & Kurihara, S. (2013). Disaster-resilient networking: A new vision based on movable and deployable resource units. IEEE Network, 27(4), 40–46.

    Article  Google Scholar 

  4. Jorguseski, L., Fledderus, E., Farserotu, J., & Prasad, R. (2001). Radio resource allocation in third generation mobile communication systems. IEEE Communications Magazine, 39(2), 117–123.

    Article  Google Scholar 

  5. Patil, K., Prasad, R., & Skouby, K. (2011). A survey of worldwide spectrum occupancy measurement campaigns for cognitive radio. In 2011 International conference on devices and communications (ICDeCom) (pp. 1–5). IEEE.

  6. Iapichino, G., Bonnet, C., del Rio Herrero, O., Baudoin, C., & Buret, I. (2008). A mobile ad-hoc satellite and wireless mesh networking approach for public safety communications. In 2008 10th international workshop on signal processing for space communications (pp. 1–6). IEEE.

  7. Ran, Y. (2011). Considerations and suggestions on improvement of communication network disaster countermeasures after the Wenchuan earthquake. IEEE Communications Magazine, 49(1), 44–47.

    Article  Google Scholar 

  8. Farserotu, J., & Prasad, R. (2000). A survey of future broadband multimedia satellite systems, issues and trends. IEEE Communications Magazine, 38(6), 128–133.

    Article  Google Scholar 

  9. De Sanctis, M., Cianca, E., Araniti, G., Bisio, I., & Prasad, R. (2015). Satellite communications supporting internet of remote things. IEEE Internet of Things Journal, 3(1), 113–123.

    Article  Google Scholar 

  10. Zhou, J., Zhou, C., Kang, Y., & Tu, S. (2021). Integrated satellite-ground post-disaster emergency communication networking technology. Natural Hazards Research, 1, 4–10.

    Article  Google Scholar 

  11. Pecorella, T., Ronga, L. S., Chiti, F., Jayousi, S., & Franck, L. (2015). Emergency satellite communications: Research and standardization activities. IEEE Communications Magazine, 53(5), 170–177.

    Article  Google Scholar 

  12. UN ESCAP. (2008). ICT-enabled disaster risk reduction in Asia & the Pacific, UN Economic and Social Commission for Asia and the Pacific, UN ESCAP: Committee on Information and Communications Technology.

  13. Del Re, E., Morosi, S., Jayousi, S., & Sacchi, C. (2009). Salice-satellite-assisted localization and communication systems for emergency services. In 2009 1st international conference on wireless communication, vehicular technology, information theory and aerospace & electronic systems technology (pp. 544–548). IEEE.

  14. Prasad, R., & Ruggieri, M. (2005). Applied satellite navigation using GPS, GALILEO, and augmentation systems. Artech House.

    Google Scholar 

  15. Casoni, M., Grazia, C. A., Klapez, M., Patriciello, N., Amditis, A., & Sdongos, E. (2015). Integration of satellite and LTE for disaster recovery. IEEE Communications Magazine, 53(3), 47–53.

    Article  Google Scholar 

  16. Siyang, L., Fei, Q., Zhen, G., Yuan, Z., & Yizhou, H. (2013). LTE-satellite: Chinese proposal for satellite component of IMT-Advanced system. China Communications, 10(10), 47–64.

    Article  Google Scholar 

  17. Digital Mobile Radio (DMR). Retrieved January 28, 2013, from http://www.etsi.org/website/Technologies/DigitalMobileRadio.aspx.

  18. Vodafone Instant Network. Retrieved January 28, 2020, from http://www.vodafone.com/content/index/about/foundation/instant_network/vodafone_instantnet--work.html.

  19. Katie Collins. (2014). This rucksack contains a mobile network for disaster zones. Retrieved August 24, 2021, from http://www.wired.co.uk/news/archive/2014-02/26/vodafone-instant-network-mini.

  20. Ushahidi, BRCK Specifications. Retrieved August 24, 2021, from http://www.brck.com/specifications.

  21. Yin, M., Li, W., Feng, L., Yu, P., & Qiu, X. (2017). Multi-cell cooperative outage compensation in cloud-RANs based 5G public safety network. IEEE Access, 5, 17309–17321.

    Article  Google Scholar 

  22. Wang, Y., Feng, G., Sun, Y., Qin, S., & Liang, Y. C. (2020). Decentralized learning based indoor interference mitigation for 5G-and-beyond systems. IEEE Transactions on Vehicular Technology, 69(10), 12124–12135.

    Google Scholar 

  23. Saluja, D., Singh, R., Choi, K., & Kumar, S. (2021). Design and analysis of aerial-terrestrial network: A joint solution for coverage and rate. IEEE Access, 9, 81855–81870.

    Article  Google Scholar 

  24. Chamola, V., Hassija, V., Gupta, S., Goyal, A., Guizani, M., & Sikdar, B. (2020). Disaster and pandemic management using machine learning: A survey. IEEE Internet of Things Journal, 8(21), 16047–16071.

  25. Usman, M., Gebremariam, A. A., Raza, U., & Granelli, F. (2015). A software-defined device-to-device communication architecture for public safety applications in 5G networks. IEEE Access, 3, 1649–1654.

    Article  Google Scholar 

  26. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

    Article  Google Scholar 

  27. Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., Laroia, R., & Jovicic, A. (2013). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. IEEE/ACM Transactions on Networking, 21(4), 1215–1228.

    Article  Google Scholar 

  28. Alam, M., Yang, D., Rodriguez, J., & Abd-Alhameed, R. A. (2014). Secure device-to-device communication in LTE-A. IEEE Communications Magazine, 52(4), 66–73.

    Article  Google Scholar 

  29. Ruengsatra, T., Nakorn, K. N., Piromsopa, K., & Rojviboonchai, K. (2015). A hybrid communication approach for disaster recovery system. In 2015 IEEE/ACIS 16th international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD) (pp. 1–6). IEEE.

  30. Chu, Z., Nguyen, H. X., Le, T. A., Karamanoglu, M., Ever, E., & Yazici, A. (2017). Secure wireless powered and cooperative jamming D2D communications. IEEE Transactions on Green Communications and Networking, 2(1), 1–13.

    Article  Google Scholar 

  31. Fodor, G., Parkvall, S., Sorrentino, S., Wallentin, P., Lu, Q., & Brahmi, N. (2014). Device-to-device communications for national security and public safety. IEEE Access, 2, 1510–1520.

    Article  Google Scholar 

  32. Ferrus, R., Sallent, O., Baldini, G., & Goratti, L. (2013). LTE: The technology driver for future public safety communications. IEEE Communications Magazine, 51(10), 154–1f

    Article  Google Scholar 

  33. Zakia, U., Turza, M. W., Karim, E., Moumita, T. Z., & Khan, T. A. (2016). A Navigation system for rescue operation during disaster management using LTE advanced network and WPAN. In 2016 IEEE 7th annual information technology, electronics and mobile communication conference (IEMCON) (pp. 1–6). IEEE.

  34. Jedidi, L., Chekir, M., Louati, F., Bouraoui, R., & Besbes, H. (2017). Cooperative D2D discovery approach for public safety based on spreading technique. In 2017 13th international wireless communications and mobile computing conference (IWCMC) (pp. 190–195). IEEE.

  35. Zhou, J., Jiang, H., Wu, J., Wu, L., Zhu, C., & Li, W. (2016). SDN-based application framework for wireless sensor and actor networks. IEEE Access, 4, 1583–1594.

    Article  Google Scholar 

  36. Coriat, F., Arantes, L., Marin, O., Fladenmuller, A., Hidalgo, N., & Rosas, E. (2014). Towards distributed geolocation for large scale disaster management. In 2014 33rd international conference of the Chilean computer science society (SCCC) (pp. 70–75). IEEE.

  37. Kamruzzaman, M., Sarkar, N. I., Gutierrez, J., & Ray, S. K. (2017). A study of IoT-based post-disaster management. In 2017 international conference on information networking (ICOIN) (pp. 406–410). IEEE.

  38. Peer, M., Bohara, V. A., & Srivastava, A. (2021). Enabling disaster-resilient communication using multi-hop device-to-device framework. Wireless Networks, 27(1), 649–661.

    Article  Google Scholar 

  39. Wei, C. Y. (2019). A sinr-based synchronization protocol for d2d communications in public safety. IEEE Access, 7, 15113–15124.

    Article  Google Scholar 

  40. Zhou, X., Durrani, S., & Guo, J. (2019). Drone-initiated D2D-aided multihop multicast networks for emergency information dissemination. IEEE Access, 8, 3566–3578.

    Article  Google Scholar 

  41. Wang, J., Cheng, W., & Zhang, H. (2020). Caching and D2D assisted wireless emergency communications networks with statistical QoS provisioning. Journal of Communications and Information Networks, 5(3), 282–293.

    Article  Google Scholar 

  42. Thornburg, A., Bai, T., & Heath, R. W. (2016). Performance analysis of outdoor mmWave ad hoc networks. IEEE Transactions on Signal Processing, 64(15), 4065–4079.

    Article  MathSciNet  MATH  Google Scholar 

  43. Deepak, G. C., Ladas, A., Sambo, Y. A., Pervaiz, H., Politis, C., & Imran, M. A. (2019). An overview of post-disaster emergency communication systems in the future networks. IEEE Wireless Communications, 26(6), 132–139.

    Article  Google Scholar 

  44. Elshrkasi, A., Dimyati, K., Ahmad, K. A. B., & bin Mohamed Said, M. F. (2021). Energy and performance-aware balancing in establishing an emergency wireless communication network. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2021.06.014

    Article  Google Scholar 

  45. Thiruvasagam, P. K., Chakraborty, A., & Murthy, C. S. R. (2021). Resilient and latency-aware orchestration of network slices using multi-connectivity in MEC-enabled 5G networks. IEEE Transactions on Network and Service Management, 18, 2502–2514.

    Article  Google Scholar 

  46. Chochliouros, I. P., Spiliopoulou, A. S., Lazaridis, P. I., Zaharis, Z. D., Spada, M. R., Pérez-Romero, J., Blanco, B., Khalife, H., Khaleghi, E. E., & Kourtis, M. A. (2021). 5G for the support of public safety services. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08473-5

    Article  Google Scholar 

  47. Damsgaard, J., Parikh, M. A., & Rao, B. (2006). Wireless commons perils in the common good. Communications of the ACM, 49(2), 104–109.

    Article  Google Scholar 

  48. Subbarao, M. W. (2000). Mobile ad hoc data networks for emergency preparedness telecommunications-dynamic power-conscious routing concepts. Submitted as an interim project for Contract Number DNCR086200 to the National Communications Systems. https://www.w3.antd.nist.gov/subbarao/MANET/manet.html

  49. Aïache, H., Conan, V., Guibé, G., Leguay, J., Le Martret, C., Barcelo, J. M., & Voorhaen, M. (2005). WIDENS: Advanced wireless ad-hoc networks for public safety. In IST summit.

  50. Kanchanasut, K., Tunpan, A., Awal, M., Wongsaardsakul, T., Das, D., & Tsuchimoto, Y. (2007). Building a long-distance multimedia wireless mesh network for collaborative disaster emergency responses. Internet Education and Research Laboratory, Asian Institute of Technology.

    Google Scholar 

  51. Ejmaa, A. M. E., Subramaniam, S., Zukarnain, Z. A., & Hanapi, Z. M. (2016). Neighbor-based dynamic connectivity factor routing protocol for mobile ad hoc network. IEEE Access, 4, 8053–8064.

    Article  Google Scholar 

  52. Hormati, M., Belqasmi, F., Glitho, R., & Khendek, F. (2013). A DNS protocol-based service discovery architecture for disaster response systems. In 2013 IEEE symposium on computers and communications (ISCC) (pp. 000366–000371). IEEE.

  53. Monares, A., Ochoa, S. F., Pino, J. A., Herskovic, V., Rodriguez-Covili, J., & Neyem, A. (2011). Mobile computing in urban emergency situations: Improving the support to firefighters in the field. Expert Systems with Applications, 38(2), 1255–1267.

    Article  Google Scholar 

  54. Martinez, Z. O. N., Arias, O. M., López, P. A., & Ugarte, S. A. (2016). Hybrid wireless ad hoc network design based on WIFI technology for facing seismic catastrophes. In 2016 IEEE Canadian conference on electrical and computer engineering (CCECE) (pp. 1–6). IEEE.

  55. Banerjee, D., & DasBit, S. (2014). Reviving communication in post disaster scenario using ZIGBEE/GSM Heterogeneous Network. In 2014 International conference on advances in computing, communications and informatics (ICACCI) (pp. 2067–2073). IEEE.

  56. Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125–1143.

    Article  Google Scholar 

  57. Kwan, M. P., & Lee, J. (2005). Emergency response after 9/11: The potential of real-time 3D GIS for quick emergency response in micro-spatial environments. Computers, Environment and Urban Systems, 29(2), 93–113.

    Article  Google Scholar 

  58. Lien, Y. N., Jang, H. C., & Tsai, T. C. (2009). P2Pnet: A MANET based emergency communication system for catastrophic natural disasters. In 29th IEEE international conference on distributed computing systems workshops, Montreal.

  59. Lien, Y. N., Jang, H. C., & Tsai, T. C. (2009). A MANET based emergency communication and information system for catastrophic natural disasters. In 2009 29th IEEE international conference on distributed computing systems workshops (pp. 412–417). IEEE.

  60. Fajardo, J. T. B., & Oppus, C. M. (2010). A mobile disaster management system using the android technology. WSEAS Transactions on Communications, 9(6), 343–353.

    Google Scholar 

  61. Niranjan, D., & Vatsa, A. K. (2011). Context based location management for MANET in disaster area using mobile agent. International Journal on Computer Science and Technology, 2(4), 277–282.

  62. Szczodrak, M., & Kim, J. (2007). 4G and Manet, Wireless Network of Future Battlefield. In Security and Management. In Proceedings of the 2007 International Conference on Security and Management (pp. 282–290). Las Vegas, USA.

  63. Schöning, J., Rohs, M., Krüger, A., & Stasch, C. (2008). Improving the communication of spatial information in crisis response by combining paper maps and mobile devices. In International workshop on mobile information technology for emergency response (pp. 57–65). Springer, Berlin, Heidelberg.

  64. Martí, R., Robles, S., Martín-Campillo, A., & Cucurull, J. (2009). Providing early resource allocation during emergencies: The mobile triage tag. Journal of Network and Computer Applications, 32(6), 1167–1182.

    Article  Google Scholar 

  65. Narayanan, R. G. L., & Ibe, O. C. (2012). A joint network for disaster recovery and search and rescue operations. Computer Networks, 56(14), 3347–3373.

    Article  Google Scholar 

  66. Zaidi, S. M. A., Manalastas, M., Farooq, H., & Imran, A. (2020). Mobility management in emerging ultra-dense cellular networks: A survey, outlook, and future research directions. IEEE Access, 8, 183505–183533.

    Article  Google Scholar 

  67. Im, H. S., & Lee, S. H. (2020). Mobility-assisted covert communication over wireless ad hoc networks. IEEE Transactions on Information Forensics and Security, 16, 1768–1781.

    Article  Google Scholar 

  68. Ojetunde, B., Shibata, N., & Gao, J. (2017). Secure payment system utilizing MANET for disaster areas. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(12), 2651–2663.

    Article  Google Scholar 

  69. Khan, B. U. I., Anwar, F., Olanrewaju, R. F., Pampori, B. R., & Mir, R. N. (2020). A game theory-based strategic approach to ensure reliable data transmission with optimized network operations in futuristic mobile adhoc networks. IEEE Access, 8, 124097–124109.

    Article  Google Scholar 

  70. Lorincz, K., Malan, D. J., Fulford-Jones, T. R., Nawoj, A., Clavel, A., Shnayder, V., Mainland, G., Welsh, M., & Moulton, S. (2004). Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing, 3(4), 16–23.

    Article  Google Scholar 

  71. Cardona, N., Coronado, E., Latré, S., Riggio, R., & Marquez-Barja, J. M. (2020). Software-defined vehicular networking: Opportunities and challenges. IEEE Access, 8, 219971–219995.

    Article  Google Scholar 

  72. Joe, M. M., & Ramakrishnan, B. (2021). Live emergency and warning alerts through android application for vehicular ad hoc network communication (android VANET). Wireless Personal Communications, 116(1), 125–151.

    Article  Google Scholar 

  73. Bruno, R., Conti, M., & Gregori, E. (2005). Mesh networks: Commodity multihop ad hoc networks. IEEE Communications Magazine, 43(3), 123–131.

    Article  Google Scholar 

  74. Suzuki, H., Kaneko, Y., Mase, K., Yamazaki, S., & Makino, H. (2006, September). An ad hoc network in the sky, SKYMESH, for large-scale disaster recovery. In IEEE vehicular technology conference (pp. 1–5). IEEE.

  75. Kanchanasut, K., Tunpan, A., Awal, M. A., Das, D. K., Wongsaardsakul, T., & Tsuchimoto, Y. (2007). DUMBONET: A multimedia communication system for collaborative emergency response operations in disaster-affected areas. International Journal of Emergency Management, 4(4), 670–681.

    Article  Google Scholar 

  76. Peña-Mora, F., Aziz, Z., Chen, A. Y., Plans, A., & Foltz, S. (2008). Building assessment during disaster response and recovery. Proceedings of the Institution of Civil Engineers-Urban Design and Planning, 161(4), 183–195.

    Article  Google Scholar 

  77. Giuliano, R., Mazzenga, F., Petracca, M., & Vari, M. (2013). Indoor localization system for first responders in emergency scenario. In 2013 9th international wireless communications and mobile computing conference (IWCMC) (pp. 1821–1826). IEEE.

  78. Vemula, D. T., Yu, X., & Ganz, A. (2009). Real time localization of victims at an emergency site: Architecture, algorithms and experimentation. In 2009 annual international conference of the IEEE engineering in medicine and biology society (pp. 1703–1706). IEEE.

  79. Conti, M., & Giordano, S. (2014). Mobile ad hoc networking: Milestones, challenges, and new research directions. IEEE Communications Magazine, 52(1), 85–96.

    Article  Google Scholar 

  80. Martín-Campillo, A., & Martí, R. (2012). Energy-efficient forwarding mechanism for wireless opportunistic networks in emergency scenarios. Computer Communications, 35(14), 1715–1724.

    Article  Google Scholar 

  81. Badirkhanli, O., Akan, O. B., & Ergul, O. (2020). Rescue: Wireless power-enabled communication architecture for earthquake rescue operations. Physical Communication, 38, 100925.

    Article  Google Scholar 

  82. Begerow, P., Krug, S., Schellenberg, S., & Seitz, J. (2015). Robust reliability-aware buffer management for DTN multicast in disaster scenarios. In 2015 7th international workshop on reliable networks design and modeling (RNDM) (pp. 274–280). IEEE.

  83. Joe, I., & Kim, S. B. (2010). A message priority routing protocol for delay tolerant networks (DTN) in disaster areas. In International conference on future generation information technology (pp. 727–737). Springer, Berlin, Heidelberg.

  84. Martín-Campillo, A., Crowcroft, J., Yoneki, E., Martí, R., & Martínez-García, C. (2010). Using Haggle to create an electronic triage tag. In Proceedings of the second international workshop on mobile opportunistic networking (pp. 167–170).

  85. Chenji, H., Zhang, W., Stoleru, R., & Arnett, C. (2013). Distressnet: A disaster response system providing constant availability cloud-like services. Ad Hoc Networks, 11(8), 2440–2460.

    Article  Google Scholar 

  86. Fujihara, A., & Miwa, H. (2012). Real-time disaster evacuation guidance using opportunistic communications. In 2012 IEEE/IPSJ 12th international symposium on applications and the internet (pp. 326–331). IEEE.

  87. Uchida, N., Kawamura, N., Williams, N., Takahata, K., & Shibata, Y. (2013). Proposal of delay tolerant network with cognitive wireless network for disaster information network system. In 2013 27th international conference on advanced information networking and applications workshops (pp. 249–254). IEEE.

  88. Uchida, N., Kawamura, N., Takahata, K., Shibata, Y., & Shiratori, N. (2013). Proposal of data triage methods for disaster information network system based on delay tolerant networking. In 2013 eighth international conference on broadband and wireless computing, communication and applications (pp. 15–21). IEEE.

  89. Ochoa, S. F., & Santos, R. (2015). Human-centric wireless sensor networks to improve information availability during urban search and rescue activities. Information Fusion, 22, 71–84.

    Article  Google Scholar 

  90. Nishiyama, H., Ito, M., & Kato, N. (2014). Relay-by-smartphone: Realizing multihop device-to-device communications. IEEE Communications Magazine, 52(4), 56–65.

    Article  Google Scholar 

  91. Wu, C., Yoshinaga, T., & Ji, Y. (2017). DTN-based vehicular cloud for post-disaster information sharing. In 2017 wireless days (pp. 167–172). IEEE.

  92. Lee, T. H., & Choi, T. (2011). Self-powered wireless communication platform for disaster relief. In 2011 13th Asia-Pacific network operations and management symposium (pp. 1–3). IEEE.

  93. Google Inc. Retrieved August 24, 2021, from https://www.google.org/crisisresponse/howwe-respond.html.

  94. Jia, S., Fadlullah, Z. M., Kato, N., & Zhang, L. (2016). Eco-Udc: An energy efficient data collection method for disaster area networks. In 2016 IEEE international conference on network infrastructure and digital content (IC-NIDC) (pp. 130–134). IEEE.

  95. Merwaday, A., Tuncer, A., Kumbhar, A., & Guvenc, I. (2016). Improved throughput coverage in natural disasters: Unmanned aerial base stations for public-safety communications. IEEE Vehicular Technology Magazine, 11(4), 53–60.

    Article  Google Scholar 

  96. Sanchez-Garcia, J., Garcia-Campos, J. M., Toral, S. L., Reina, D. G., & Barrero, F. (2015). A self organising aerial ad hoc network mobility model for disaster scenarios. In 2015 international conference on developments of E-systems engineering (DeSE) (pp. 35–40). IEEE.

  97. Lin, Y., Wang, T., & Wang, S. (2019). UAV-assisted emergency communications: An extended multi-armed bandit perspective. IEEE Communications Letters, 23(5), 938–941.

    Article  Google Scholar 

  98. Zhao, N., Lu, W., Sheng, M., Chen, Y., Tang, J., Yu, F. R., & Wong, K. K. (2019). UAV-assisted emergency networks in disasters. IEEE Wireless Communications, 26(1), 45–51.

    Article  Google Scholar 

  99. Pan, M., Chen, C., Yin, X., & Huang, Z. (2021). UAVs-aided emergency environmental monitoring in infrastructure-less areas: LoRa mesh networking approach. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3095494

    Article  Google Scholar 

  100. Bucaille, I., Héthuin, S., Munari, A., Hermenier, R., Rasheed, T., & Allsopp, S. (2013). Rapidly deployable network for tactical applications: Aerial base station with opportunistic links for unattended and temporary events absolute example. In MILCOM 2013–2013 IEEE military communications conference (pp. 1116–1120). IEEE.

  101. Maza, I., Caballero, F., Capitán, J., Martínez-de-Dios, J. R., & Ollero, A. (2011). Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of intelligent & robotic systems, 61(1), 563–585.

    Article  Google Scholar 

  102. De Freitas, E. P., Heimfarth, T., Vinel, A., Wagner, F. R., Pereira, C. E., & Larsson, T. (2013). Cooperation among wirelessly connected static and mobile sensor nodes for surveillance applications. Sensors, 13(10), 12903–12928.

    Article  Google Scholar 

  103. Al-Hourani, A., Kandeepan, S., & Lardner, S. (2014). Optimal LAP altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6), 569–572.

    Article  Google Scholar 

  104. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Optimal transport theory for power-efficient deployment of unmanned aerial vehicles. In 2016 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  105. Feng, Q., Tameh, E. K., Nix, A. R., & McGeehan, J. (2006). WLCp2–06: Modelling the likelihood of line-of-sight for air-to-ground radio propagation in urban environments. In IEEE Globecom 2006 (pp. 1–5). IEEE.

  106. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Communications Letters, 20(8), 1647–1650.

    Article  Google Scholar 

  107. Al-Hourani, A., Kandeepan, S., & Jamalipour, A. (2014). Modeling air-to-ground path loss for low altitude platforms in urban environments. In 2014 IEEE global communications conference (pp. 2898–2904). IEEE.

  108. Holis, J., & Pechac, P. (2008). Elevation dependent shadowing model for mobile communications via high altitude platforms in built-up areas. IEEE Transactions on Antennas and Propagation, 56(4), 1078–1084.

    Article  Google Scholar 

  109. Kalantari, E., Yanikomeroglu, H., & Yongacoglu, A. (2016). On the number and 3D placement of drone base stations in wireless cellular networks. In 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1–6). IEEE.

  110. Reynaud, L., & Rasheed, T. (2012). Deployable aerial communication networks: Challenges for futuristic applications. In Proceedings of the 9th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (pp. 9–16).

  111. Akarsu, A., & Girici, T. (2017). Fairness aware multiple drone base station deployment. IET Communications, 12(4), 425–431.

    Article  Google Scholar 

  112. Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing (Vol. 53, p. 18). Springer.

    Book  MATH  Google Scholar 

  113. Košmerl, J., & Vilhar, A. (2014). Base stations placement optimization in wireless networks for emergency communications. In 2014 IEEE international conference on communications workshops (ICC) (pp. 200–205). IEEE.

  114. Li, X., Guo, D., Grosspietsch, J., Yin, H., & Wei, G. (2015). Maximizing mobile coverage via optimal deployment of base stations and relays. IEEE Transactions on Vehicular Technology, 65(7), 5060–5072.

    Article  Google Scholar 

  115. Li, X., Guo, D., Yin, H., & Wei, G. (2015). Drone-assisted public safety wireless broadband network. In 2015 IEEE wireless communications and networking conference workshops (WCNCW) (pp. 323–328). IEEE.

  116. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Mobile Internet of Things: Can UAVs provide an energy-efficient mobile architecture? In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE.

  117. Zhang, X., & Duan, L. (2018). Fast deployment of UAV networks for optimal wireless coverage. IEEE Transactions on Mobile Computing, 18(3), 588–601.

    Article  Google Scholar 

  118. Liu, B., Zhu, Q., & Zhu, H. (2020). Trajectory optimization and resource allocation for UAV-assisted relaying communications. Wireless Networks, 26(1), 739–749.

    Article  Google Scholar 

  119. Sharma, V., Bennis, M., & Kumar, R. (2016). UAV-assisted heterogeneous networks for capacity enhancement. IEEE Communications Letters, 20(6), 1207–1210.

    Article  Google Scholar 

  120. Sharma, V., Sabatini, R., & Ramasamy, S. (2016). UAVs assisted delay optimization in heterogeneous wireless networks. IEEE Communications Letters, 20(12), 2526–2529.

    Article  Google Scholar 

  121. Bor-Yaliniz, I., & Yanikomeroglu, H. (2016). The new frontier in RAN heterogeneity: Multi-tier drone-cells. IEEE Communications Magazine, 54(11), 48–55.

    Article  Google Scholar 

  122. Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2019). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys & tutorials, 21(3), 2334–2360.

    Article  Google Scholar 

  123. Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 988–1001.

    Article  MathSciNet  MATH  Google Scholar 

  124. Cheng, P., Keller, J., & Kumar, V. (2008). Time-optimal UAV trajectory planning for 3D urban structure coverage. In 2008 IEEE/RSJ international conference on intelligent robots and systems (pp. 2750–2757). IEEE.

  125. Ali, K., Nguyen, H. X., Vien, Q. T., Shah, P., & Raza, M. (2020). Deployment of drone-based small cells for public safety communication system. IEEE Systems Journal, 14(2), 2882–2891.

    Article  Google Scholar 

  126. Niu, H., Zhao, X., & Li, J. (2021). 3D location and resource allocation optimization for UAV-enabled emergency networks under statistical QoS constraint. IEEE Access, 9, 41566–41576.

    Article  Google Scholar 

  127. Liu, X., & Ansari, N. (2018). Resource allocation in UAV-assisted M2M communications for disaster rescue. IEEE Wireless Communications Letters, 8(2), 580–583.

    Article  Google Scholar 

  128. Yao, Z., Cheng, W., Zhang, W., & Zhang, H. (2021). Resource allocation for 5G-UAV based emergency wireless communications. IEEE Journal on Selected Areas in Communications, 39, 3395–3410.

    Article  Google Scholar 

  129. Cui, J., Hu, B., & Chen, S. (2020). Resource allocation and location decision of a UAV-relay for reliable emergency indoor communication. Computer Communications, 159, 15–25.

    Article  Google Scholar 

  130. Do-Duy, T., Nguyen, L. D., Duong, T. Q., Khosravirad, S., & Claussen, H. (2021). Joint optimisation of real-time deployment and resource allocation for UAV-aided disaster emergency communications. IEEE Journal on Selected Areas in Communications, 39, 3411–3424.

    Article  Google Scholar 

  131. Deng, L., Wu, G., Fu, J., Zhang, Y., & Yang, Y. (2019). Joint resource allocation and trajectory control for UAV-enabled vehicular communications. IEEE Access, 7, 132806–132815.

    Article  Google Scholar 

  132. Wu, Q., Liu, L., & Zhang, R. (2019). Fundamental trade-offs in communication and trajectory design for UAV-enabled wireless network. IEEE Wireless Communications, 26(1), 36–44.

    Article  Google Scholar 

  133. Zhang, T., Lei, J., Liu, Y., Feng, C., & Nallanathan, A. (2021). Trajectory optimization for UAV emergency communication with limited user equipment energy: A safe-DQN approach. IEEE Transactions on Green Communications and Networking, 5, 1236–1247.

    Article  Google Scholar 

  134. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  135. Ferrus, R., Sallent, O., Baldini, G., & Goratti, L. (2012). Public safety communications: Enhancement through cognitive radio and spectrum sharing principles. IEEE Vehicular Technology Magazine, 7(2), 54–61.

    Article  Google Scholar 

  136. Rahman, T. F., & Sacchi, C. (2012). Opportunistic radio access techniques for emergency communications: Preliminary analysis and results. In 2012 IEEE first AESS European conference on satellite telecommunications (ESTEL) (pp. 1–7). IEEE.

  137. Gorcin, A., & Arslan, H. (2008). Public safety and emergency case communications: Opportunities from the aspect of cognitive radio. In 2008 3rd IEEE symposium on new frontiers in dynamic spectrum access networks (pp. 1–10). IEEE.

  138. Jesuale, N. (2011). Lights and sirens broadband—How spectrum pooling, cognitive radio, and dynamic prioritization modeling can empower emergency communications, restore sanity and save billions. In 2011 IEEE international symposium on dynamic spectrum access networks (DySPAN) (pp. 467–475). IEEE.

  139. FCC Proposes to Enable Innovative Small Cell Use of Spectrum in the 3.5 GHZ Band. Retrieved August 24, 2021, from https://www.benton.org/headlines/fcc-proposes-enable-innovative-small-cell-use-spectrum-35-ghz-band

  140. Act, S. M. (2012). Communication from the commission to the European parliament, the council, the economic and social committee and the committee of the regions. Retrieved August 24, 2021, from https://eurlex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52012DC0573

  141. Mitola, J. (1993). Software radios: Survey, critical evaluation and future directions. IEEE Aerospace and Electronic Systems Magazine, 8(4), 25–36.

    Article  Google Scholar 

  142. Tuttlebee, W. (2002). Software defined radio: Enabling technologies. Wiley.

    Book  Google Scholar 

  143. Kenington, P. B. (2005). RF and baseband techniques for software defined radio. Artech House.

    Google Scholar 

  144. V. Inc. (2007). Vanu’s Software Radio. Retrieved August 24, 2021, from http://www.vanu.com.

  145. Panizza, M., Sacchi, C., Varela-Miguez, J., Morosi, S., Vettori, L., Digenti, S., & Falletti, E. (2011). Feasibility study of a SDR-based reconfigurable terminal for emergency applications. In 2011 aerospace conference (pp. 1–18). IEEE.

  146. Azaro, R., De Natale, F., Donelli, M., Zeni, E., & Massa, A. (2006). Synthesis of a prefractal dual-band monopolar antenna for GPS applications. IEEE Antennas and Wireless Propagation Letters, 5, 361–364.

    Article  Google Scholar 

  147. Gummineni, M., & Polipalli, T. R. (2021). Implementation of reconfigurable emergency wireless communication system through SDR relay. Materials Today: Proceedings.

  148. Tadros, C. N., Rizk, M. R., & Mokhtar, B. M. (2020). Software defined network-based management for enhanced 5G network services. IEEE Access, 8, 53997–54008.

    Article  Google Scholar 

  149. Coronado, E., Khan, S. N., & Riggio, R. (2019). 5G-EmPOWER: A software-defined networking platform for 5G radio access networks. IEEE Transactions on Network and Service Management, 16(2), 715–728.

    Article  Google Scholar 

  150. Theodorou, T., & Mamatas, L. (2020). A versatile out-of-band software-defined networking solution for the Internet of Things. IEEE Access, 8, 103710–103733.

    Article  Google Scholar 

  151. Rafique, W., Qi, L., Yaqoob, I., Imran, M., Rasool, R. U., & Dou, W. (2020). Complementing IoT services through software defined networking and edge computing: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3), 1761–1804.

    Article  Google Scholar 

  152. Lin, C., Han, G., Du, J., Xu, T., Shu, L., & Lv, Z. (2020). Spatiotemporal congestion-aware path planning toward intelligent transportation systems in software-defined smart city IoT. IEEE Internet of Things Journal, 7(9), 8012–8024.

    Article  Google Scholar 

  153. Chintalapudi, K., Padmanabha Iyer, A., & Padmanabhan, V. N. (2010). Indoor localization without the pain. In Proceedings of the sixteenth annual international conference on Mobile computing and networking (pp. 173–184).

  154. Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An in-building RF-based user location and tracking system. In Proceedings IEEE INFOCOM 2000. Conference on computer communications. Nineteenth annual joint conference of the IEEE computer and communications societies (Cat. No. 00CH37064) (Vol. 2, pp. 775–784). IEEE.

  155. Borriello, G., Liu, A., Offer, T., Palistrant, C., & Sharp, R. (2005). Walrus: Wireless acoustic location with room-level resolution using ultrasound. In Proceedings of the 3rd international conference on Mobile systems, applications, and services (pp. 191–203).

  156. Guerrieri, J. R., Francis, M. H., Wilson, P. F., Kos, T., Miller, L. E., Bryner, N. P., Stroup, D. W., & Klein-Berndt, L. (2006). RFID-assisted indoor localization and communication for first responders. In 2006 first European conference on antennas and propagation (pp. 1–6). IEEE.

  157. Jang, B., & Kim, H. (2018). Indoor positioning technologies without offline fingerprinting map: A survey. IEEE Communications Surveys & Tutorials, 21(1), 508–525.

    Article  MathSciNet  Google Scholar 

  158. You, Y., & Wu, C. (2019). Indoor positioning system with cellular network assistance based on received signal strength indication of beacon. IEEE Access, 8, 6691–6703.

    Article  Google Scholar 

  159. Yang, X., Liu, Z., Nie, W., He, W., & Pu, Q. (2020). AP optimization for Wi-Fi indoor positioning-based on RSS feature fuzzy mapping and clustering. IEEE Access, 8, 153599–153609.

    Article  Google Scholar 

  160. Ren, J., Wang, Y., Niu, C., Song, W., & Huang, S. (2019). A novel clustering algorithm for Wi-Fi indoor positioning. IEEE Access, 7, 122428–122434.

    Article  Google Scholar 

  161. Cheng, C. H., Wang, T. P., & Huang, Y. F. (2020). Indoor positioning system using artificial neural network with swarm intelligence. IEEE Access, 8, 84248–84257.

    Article  Google Scholar 

  162. Berbakov, L., Pavkovic, B., & Vrane, S. (2015). Smart indoor positioning system for situation awareness in emergency situations. In 2015 26th international workshop on database and expert systems applications (DEXA) (pp. 139–143). IEEE.

  163. Ying, H., Silex, C., Schnitzer, A., Leonhardt, S., & Schiek, M. (2007). Automatic step detection in the accelerometer signal. In 4th international workshop on wearable and implantable body sensor networks (BSN 2007) (pp. 80–85). Springer, Berlin, Heidelberg.

  164. Simon, N., Bordoy, J., Höflinger, F., Wendeberg, J., Schink, M., Tannhäuser, R., Reindl, L., & Schindelhauer, C. (2015). Indoor localization system for emergency responders with ultra low-power radio landmarks. In 2015 IEEE international instrumentation and measurement technology conference (I2MTC) proceedings (pp. 309–314). IEEE.

  165. Zhang, R., Hoflinger, F., & Reindl, L. (2012). Inertial sensor based indoor localization and monitoring system for emergency responders. IEEE Sensors Journal, 13(2), 838–848.

    Article  Google Scholar 

  166. Noh, Y., Yamaguchi, H., Lee, U., Vij, P., Joy, J., & Gerla, M. (2013). CLIPS: Infrastructure-free collaborative indoor positioning scheme for time-critical team operations. In 2013 IEEE international conference on pervasive computing and communications (PerCom) (pp. 172–178). IEEE.

  167. Olsson, F., Rantakokko, J., & Nygårds, J. (2014). Cooperative localization using a foot-mounted inertial navigation system and ultrawideband ranging. In 2014 International conference on indoor positioning and indoor navigation (IPIN) (pp. 122–131). IEEE.

  168. Retrieved August 04, 2014, fromwww.seertechnology.com.

  169. Retrieved August 04, 2014, fromhttp://www51.honeywell.com/aero/common/documents/myaerospacecatalogdocuments/Missiles-Munitions/DRM4000.pdf.

  170. Rantakokko, J., Rydell, J., Strömbäck, P., Händel, P., Callmer, J., Törnqvist, D., Gustafsson, F., Jobs, M., & Grudén, M. (2011). Accurate and reliable soldier and first responder indoor positioning: multisensor systems and cooperative localization. IEEE Wireless Communications, 18(2), 10–18.

    Article  Google Scholar 

  171. Hawkinson, W., Samanant, P., McCroskey, R., Ingvalson, R., Kulkarni, A., Haas, L., & English, B. (2012). GLANSER: Geospatial location, accountability, and Navigation System for Emergency Responders-system concept and performance assessment. In Proceedings of the 2012 IEEE/ION position, location and navigation symposium (pp. 98–105). IEEE.

  172. Rydell, J., & Emilsson, E. (2013). Chameleon v2: Improved imaging-inertial indoor navigation. In Proceedings of the 26th international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2013) (pp. 737–745).

  173. Foxlin, E. (2005). Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer graphics and applications, 25(6), 38–46.

    Article  Google Scholar 

  174. Retrieved August 18, 2014, from http://www.openshoe.org/.

  175. Li, X. (2018). A GPS-based indoor positioning system with delayed repeaters. IEEE Transactions on Vehicular Technology, 68(2), 1688–1701.

    Article  Google Scholar 

  176. Xia, H., Zuo, J., Liu, S., & Qiao, Y. (2018). Indoor localization on smartphones using built-in sensors and map constraints. IEEE Transactions on Instrumentation and Measurement, 68(4), 1189–1198.

    Article  Google Scholar 

  177. Malik, G., & Singh, A. (2013). Wimax or Wi-Fi: The next generation technology for wireless networking infrastructure. International Journal of Advances in Engineering & Technology, 6(3), 1381.

    Google Scholar 

  178. Fantacci, R., & Tarchi, D. (2006). Bridging solutions for a heterogeneous wimax-wifi scenario. Journal of Communications and Networks, 8(4), 369–377.

    Article  Google Scholar 

  179. da Silva, R. I., Almeida, V. D. D., Poersch, A. M., & Nogueira, J. M. S. (2010). Wireless sensor network for disaster management. In 2010 IEEE network operations and management symposium-NOMS 2010 (pp. 870–873). IEEE.

  180. Tchao, E. T., Diawuo, K., & Ofosu, W. K. (2017). Mobile telemedicine implementation with WiMAX technology: A case study of Ghana. Journal of medical systems, 41(1), 1–10.

    Article  Google Scholar 

  181. Lin, W. Y., Chen, Y. C., Chang, R. Y., Chen, S. H., & Lee, C. L. (2012). Rapid WiMAX network deployment for emergency services. In ISWPC 2012 proceedings (pp. 1–5). IEEE.

  182. Anwar, S., Prasad, R., Chowdhary, B. S., & Anjum, M. R. (2019). A telemedicine platform for disaster management and emergency care. Wireless Personal Communications, 106(1), 191–204.

    Article  Google Scholar 

  183. Chen, X., & Zhao, G. (2007). Early warning monitoring and management of disasters. In IEEE international symposium on geoscience and remote sensing (pp. 23–28).

  184. Aziz, N. A. A., & Aziz, K. A. (2011). Managing disaster with wireless sensor networks. In 13th international conference on advanced communication technology (ICACT2011) (pp. 202–207). IEEE.

  185. Cayirci, E., & Coplu, T. (2007). SENDROM: Sensor networks for disaster relief operations management. Wireless Networks, 13(3), 409–423.

    Article  Google Scholar 

  186. Saha, S., & Matsumoto, M. (2006). Performance analysis of wsndm (wireless sensor network protocol for disaster management). In 2006 international conference on communication technology (pp. 1–4). IEEE.

  187. Pompili, D., Melodia, T., & Akyildiz, I. F. (2006). Routing algorithms for delay-insensitive and delay-sensitive applications in underwater sensor networks. In Proceedings of the 12th annual international conference on Mobile computing and networking (pp. 298–309).

  188. Wu, H., Qiao, C., De, S., & Tonguz, O. (2001). Integrated cellular and ad hoc relaying systems: ICAR. IEEE Journal on Selected Areas in Communications, 19(10), 2105–2115.

    Article  Google Scholar 

  189. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2020). Underwater sensor networks for smart disaster management. IEEE Consumer Electronics Magazine, 9(2), 107–114.

    Article  Google Scholar 

  190. Castillo-Effer, M., Quintela, D. H., Moreno, W., Jordan, R., & Westhoff, W. (2004). Wireless sensor networks for flash-flood alerting. In Proceedings of the fifth IEEE international caracas conference on devices, circuits and systems, 2004. (Vol. 1, pp. 142–146). IEEE.

  191. Bahrepour, M., Meratnia, N., Poel, M., Taghikhaki, Z., & Havinga, P. J. (2010). Distributed event detection in wireless sensor networks for disaster management. In 2010 international conference on intelligent networking and collaborative systems (pp. 507–512). IEEE.

  192. Wang, W., & Guo, L. (2012). The application of wireless sensor network technology in earthquake disaster. In 2012 international conference on industrial control and electronics engineering (pp. 52–55). IEEE.

  193. Khorov, E., Lyakhov, A., Nasedkin, I., Yusupov, R., Famaey, J., & Akyildiz, I. F. (2020). Fast and reliable alert delivery in mission-critical Wi-Fi HaLow sensor networks. IEEE Access, 8, 14302–14313.

    Article  Google Scholar 

  194. Ulucinar, A. R., Korpeoglu, I., & Cetin, A. E. (2014). A Wi-Fi cluster based wireless sensor network application and deployment for wildfire detection. International Journal of Distributed Sensor Networks, 10(10), 651957.

    Article  Google Scholar 

  195. Sardouk, A., Mansouri, M., Merghem-Boulahia, L., Gaiti, D., & Rahim-Amoud, R. (2013). Crisis management using MAS-based wireless sensor networks. Computer Networks, 57(1), 29–45.

    Article  Google Scholar 

  196. Miyazaki, T., Kawano, R., Endo, Y., & Shitara, D. (2009). A sensor network for surveillance of disaster-hit region. In 2009 4th international symposium on wireless pervasive computing (pp. 1–6). IEEE.

  197. da Silva, R. I., Almeida, V. D. D., Poersch, A. M., & Nogueira, J. M. S. (2009). Spatial query processing in wireless sensor network for disaster management. In 2009 2nd IFIP wireless days (WD) (pp. 1–5). IEEE.

  198. Wang, J., Cheng, Z., Nishiyama, I., & Zhou, Y. (2012). Design of a safety confirmation system integrating wireless sensor network and smart phones for disaster. In 2012 IEEE 6th international symposium on embedded multicore SoCs (pp. 139–143). IEEE.

  199. Rasaneh, S., & Banirostam, T. (2013). A new structure and routing algorithm for optimizing energy consumption in wireless sensor network for disaster management. In 2013 4th international conference on intelligent systems, modelling and simulation (pp. 481–485). IEEE.

  200. Saha, S., & Matsumoto, M. (2007). A wireless sensor network protocol for disaster management. In 2007 information, decision and control (pp. 209–213). IEEE.

  201. Xiao, Z., Huang, M., Shi, J., Niu, W., & Yang, J. (2011). Information fusion-based storage and retrieve algorithms for WSNs in disaster scenarios. International Journal of Distributed Sensor Networks, 8(1), 524543.

    Article  Google Scholar 

  202. Michaelides, C., & Pavlidou, F. N. (2020). Mutual aid among sensors: An emergency function for sensor networks. IEEE Sensors Letters, 4(9), 1–4.

    Article  Google Scholar 

  203. Han, G., Yang, X., Liu, L., Zhang, W., & Guizani, M. (2017). A disaster management-oriented path planning for mobile anchor node-based localization in wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 8(1), 115–125.

    Article  Google Scholar 

  204. Chang, C. L., Tsai, Y. L., Chang, C. Y., & Chen, S. T. (2021). Emergency evacuation planning via the point of view on the relationship between crowd density and moving speed. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08345-y

    Article  Google Scholar 

  205. Ma, Y., Liu, K., Chen, M., Ma, J., Zeng, X., Wang, K., & Liu, C. (2020). ANT: Deadline-aware adaptive emergency navigation strategy for dynamic hazardous ship evacuation with wireless sensor networks. IEEE Access, 8, 135758–135769.

    Article  Google Scholar 

  206. Raj, M., Kant, K., & Das, S. K. (2014). E-DARWIN: Energy aware disaster recovery network using wifi tethering. In 2014 23rd international conference on computer communication and networks (ICCCN) (pp. 1–8). IEEE.

  207. Arbia, D. B., Alam, M. M., Attia, R., & Hamida, E. B. (2015). Behavior of wireless body-to-body networks routing strategies for public protection and disaster relief. In 2015 IEEE 11th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 117–124). IEEE.

  208. Minh, Q. T., & Yamada, S. (2015). Feasibility validation of wifi based multihop access network for disaster recovery. In 2015 IEEE 29th international conference on advanced information networking and applications workshops (pp. 473–477). IEEE.

  209. Altintas, O., Seki, K., Kremo, H., Matsumoto, M., Onishi, R., & Tanaka, H. (2014). Vehicles as information hubs during disasters: Glueing Wi-Fi to TV white space to cellular networks. IEEE Intelligent Transportation Systems Magazine, 6(1), 68–71.

    Article  Google Scholar 

  210. Ray, S. K., Sinha, R., & Ray, S. K. (2015). A smartphone-based post-disaster management mechanism using WiFi tethering. In 2015 IEEE 10th conference on industrial electronics and applications (ICIEA) (pp. 966–971). IEEE.

  211. Minh, Q. T., Nguyen, K., Kamioka, E., & Yamada, S. (2013). Tree-based disaster recovery multihop access network. In 2013 19th Asia-Pacific conference on communications (APCC) (pp. 409–414). IEEE.

  212. Minh, Q. T., Nguyen, K., & Yamada, S. (2013). DRANs: Resilient disaster recovery access networks. In 2013 IEEE 37th annual computer software and applications conference workshops (pp. 754–759). IEEE.

  213. Minh, Q. T., Nguyen, K., & Yamada, S. (2014). Toward commodity wireless multihop access networks. In 2014 IEEE fifth international conference on communications and electronics (ICCE) (pp. 232–237). IEEE.

  214. Minh, Q. T., Nguyen, K., Borcea, C., & Yamada, S. (2014). On-the-fly establishment of multihop wireless access networks for disaster recovery. IEEE Communications Magazine, 52(10), 60–66.

    Article  Google Scholar 

  215. Câmara, D., Frangiadakis, N., Filali, F., Loureiro, A. A., & Roussopoulos, N. (2009). Virtual access points for disaster scenarios. In 2009 IEEE wireless communications and networking conference (pp. 1–6). IEEE.

  216. Chandra, R., & Bahl, P. (2004). MultiNet: Connecting to multiple IEEE 802.11 networks using a single wireless card. In IEEE infocom 2004 (Vol. 2, pp. 882–893). IEEE.

  217. Mao, B., Tang, F., Fadlullah, Z. M., & Kato, N. (2019). An intelligent packet forwarding approach for disaster recovery networks. In ICC 2019–2019 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  218. Panda, K. G., Das, S., Sen, D., & Arif, W. (2019). Design and deployment of UAV-aided post-disaster emergency network. IEEE Access, 7, 102985–102999.

    Article  Google Scholar 

  219. Rahman, M. A., & Forhad, M. S. A. (2019). Wi-Fi based real time communication for disaster and emergencies. In 2019 2nd international conference on innovation in engineering and technology (ICIET) (pp. 1–6). IEEE.

  220. Bankov, D. V., Khorov, E. M., Lyakhov, A. I., & Sandal, M. L. (2019). Approach to real-time communications in Wi-Fi networks. Journal of Communications Technology and Electronics, 64(8), 880–889.

    Article  Google Scholar 

  221. Hussain, S., Pesikan, P., & Fernando, X. (2017). Towards a robust rescue network: Wireless communication is the choice. In 2017 IEEE Canada international humanitarian technology conference (IHTC) (pp. 182–187). IEEE.

  222. Wang, J., Guo, S., Cheng, Z., Li, P., & Wu, J. (2016). Optimization of deployable base stations with guaranteed QoE in disaster scenarios. IEEE Transactions on Vehicular Technology, 66(7), 6536–6552.

    Article  Google Scholar 

  223. Das, S., Panda, K. G., Sen, D., & Arif, W. (2019). A survey of national disaster communication systems and spectrum allocation—An Indian perspective. IETE Technical Review, 37(2), 111–136.

    Article  Google Scholar 

  224. Saurav, K., Vermun, K., & Chakraborty, S. (2016). Adaptive redistribution of resources for ensuring service quality in a post disaster situation analysis network. In 2016 IEEE international conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6). IEEE.

  225. Chen, C., Wang, J., Qiu, F., & Zhao, D. (2015). Resilient distribution system by microgrids formation after natural disasters. IEEE Transactions on Smart Grid, 7(2), 958–966.

    Article  Google Scholar 

Download references

Funding

This work is funded by Ministry of Electronics and Information Technology, Govt. of India (Grant No.: 21(1)/2015-CC&BT).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Sanjoy Debnath]. The first draft of the manuscript was written by [Sanjoy Debnath] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Conceptualization: [Sanjoy Debnath] and [Wasim Arif]; Methodology: [Sanjoy Debnath]; Formal analysis and investigation: [Sanjoy Debnath]; Writing—original draft preparation: [Sanjoy Debnath], [Wasim Arif], [Sourav Roy] and [Debarati Sen]; Writing—review and editing: [Sanjoy Debnath], [Wasim Arif] and [Debarati Sen]; Funding acquisition: [Wasim Arif and Srimanta Baishya]; Resources: [Wasim Arif and Srimanta Baishya]; Supervision: [Wasim Arif and Debarati Sen].

Corresponding author

Correspondence to Sanjoy Debnath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. This is an observational study. The emergency communication research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

The Author transfers to Springer (respective to owner if other than Springer and for U.S. government employees: to the extent transferable) the non-exclusive publication rights and he warrants that his/her contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the non-exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, S., Arif, W., Roy, S. et al. A Comprehensive Survey of Emergency Communication Network and Management. Wireless Pers Commun 124, 1375–1421 (2022). https://doi.org/10.1007/s11277-021-09411-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09411-1

Keywords

Navigation