Skip to main content
Log in

KLT-CRKCN: Hyperspectral Image Classification via Karhunen Loeve Transformation and Collaborative Representation-Based K Closest Neighbor

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Collaborative representation-based classification is extensively used in numerous application fields for e.g. hyperspectral image and face recognition. This paper presents a simple, stable as well as efficient classification algorithm Collaborative Representation based K Closest Neighbor classes (CRKCN) that depends on nearest neighbor method. In the CRKCN, primarily some testing samples are characterized in the way of linear arrangement of each accessible training samples, and later the representation weights are assessed through l2-norm minimization. Specifically, the leading k closest neighbor pattern classes which are situated in the neighborhood of the sampling data require to be tested and further utilized. The labels for testing samples are calculated through majority votes related to weights of k major representations. In addition, a Karhunen Loeve Transformation based dimensionality reduction is executed for the selection of related bands. Finally, the experimental evaluation of proposed structure on different hyperspectral image datasets validates that it can lead a promising improvement in classification performance in contrast to related competitive traditional classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Landgrebe, D. A., Serpico, S. B., Crawford, M. M., & Singhroy, V. (2001). Introduction to the special issue on analysis of hyperspectral image data. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1343–1345.

    Article  Google Scholar 

  2. Bruzzone, L., Chi, M., & Marconcini, M. (2006). A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3363–3373.

    Article  Google Scholar 

  3. Bo, C., Huchuan, Lu., & Wang, D. (2017). Weighted generalized nearest neighbor for hyperspectral image classification. IEEE Access, 5, 1496–1509.

    Article  Google Scholar 

  4. Ham, J., Chen, Y., Crawford, M. M., & Ghosh, J. (2005). Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 492–501.

    Article  Google Scholar 

  5. Zhou, N.-R., Liu, X.-X., Chen, Y.-L., & Ni-Suo, Du. (2021). Quantum K-nearest-neighbor image classification algorithm based on KL transform. International Journal of Theoretical Physics, 60(3), 1209–1224.

    Article  Google Scholar 

  6. Samaniego, L., Bárdossy, A., & Schulz, K. (2008). Supervised classification of remotely sensed imagery using a modified $ k $-NN technique. IEEE Transactions on Geoscience and Remote Sensing, 46(7), 2112–2125.

    Article  Google Scholar 

  7. Pan, Z. B., Wang, Y. D., & Ku, W. P. (2017). A new general nearest neighbor classification based on the mutual neighborhood information. Knowledge-Based Systems, 121, 142–152.

    Article  Google Scholar 

  8. Wang, J. G., Neskovic, P., & Cooper, L. N. (2006). Neighborhood size selection in the knearest- neighbor rule using statistical confidence. Pattern Recognit., 39(3), 417–423.

    Article  Google Scholar 

  9. Zhong, X.F., Guo, S.Z., Gao, L., Shan, H., Zheng, J.H. (2017). An improved k-NN classification with dynamic k. In: Proceedings of the 9th International Conference on Machine Learning and Computing, pp. 211–216.

  10. Bulut, F., & Amasyali, M. F. (2017). Locally adaptive k parameter selection for nearest neighbor classifier: One nearest cluster. Pattern Analysis and Applications, 20(2), 415–425.

    Article  MathSciNet  Google Scholar 

  11. Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for kNN classification. ACM Transaction Intelligent System Technology, 8(3), 43.

    Google Scholar 

  12. Zhang, S. C., Li, X. L., Zong, M., Zhu, X. F., & Wang, R. L. (2018). Efficient knn classification with different numbers of nearest neighbors. IEEE Transaction Neural Network Learning System, 29(5), 1774–1785.

    Article  MathSciNet  Google Scholar 

  13. Chaudhuri, B. B. (1996). A new definition of neighbourhood of a point in multidimensional space. Pattern Recognition Letter, 17(1), 11–17.

    Article  Google Scholar 

  14. Su, H., Yu, Y., Wu, Z., Du, Q. (2020). Random subspace-based k-nearest class collaborative representation for hyperspectral image classification. In: IEEE Transactions on Geoscience and Remote Sensing.

  15. Pan, Z. P., Wang, Y. D., & Ku, W. P. (2017). A new k-harmonic nearest neighbor classifier based on the multi-local means. Expert Systems with Applications, 67, 115–125.

    Article  Google Scholar 

  16. Gou, J. P., Ma, H., Ou, W., Zeng, S., Rao, Y., Yang, H., & Liu, Y. (2009). A generalized mean distance-based k-nearest neighbor classifier. Expert Systems with Applications, 115, 356–372.

    Article  Google Scholar 

  17. Gou, J. P., Zhang, Y., Du, L., & Xiong, T. S. (2012). A local mean-based k-nearest centroid neighbor classifier. Computer Journal, 55(9), 1058–1071.

    Article  Google Scholar 

  18. Roy, S. K., Chatterjee, S., Bhattacharyya, S., Chaudhuri, B. B., & Platoš, J. (2020). Lightweight spectral-spatial squeeze-and-excitation residual bag-of-features learning for hyperspectral classification. IEEE Transactions on Geoscience and Remote Sensing, 58(8), 5277–5290.

    Article  Google Scholar 

  19. Mitani, Y., & Hamamoto, Y. (2006). A local mean-based nonparametric classifier. Pattern Recognition Letter, 27(10), 1151–1159.

    Article  Google Scholar 

  20. Zeng, Y., Yang, Y. P., & Zhao, L. (2009). Nonparametric classification based on local mean and class statistics. Expert Systems with Applications, 36(4), 8443–8448.

    Article  Google Scholar 

  21. Gou, J. P., Zhan, Y. Z., Rao, Y. B., Shen, X. J., Wang, X. M., & He, W. (2014). Improved pseudo nearest neighbor classification. Knowledge-Based System, 70, 361–375.

    Article  Google Scholar 

  22. Zeng, Y., Yang, Y. P., & Zhao, L. (2009). Pseudo nearest neighbor rule for pattern classification. Expert Systems with Applications, 36(2), 3587–3595.

    Article  Google Scholar 

  23. Gou, J.P., Qiu, W.M., Mao, Q.R., Zhan, Y.Z., Shen, X.Z., Rao, Y.B. (2017). A multi-local means based nearest neighbor classifier. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). pp. 448–452.

  24. Li, W., Chen, C., Su, H., & Du, Q. (2015). Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 12(2), 389–393.

    Article  Google Scholar 

  25. Ma, H., Gou, J., Wang, X., Ke, J., & Zeng, S. (2017). Sparse coefficient-based-nearest neighbor classification. IEEE Access, 5, 16618–16634.

    Article  Google Scholar 

  26. Li, W., Tramel, E. W., Prasad, S., & Fowler, J. E. (2013). Nearest regularized subspace for hyperspectral classification. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 477–489.

    Article  Google Scholar 

  27. Brown, D., Li, H., Gao, Y. (2012). Locality-regularized linear regression for face recognition. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), IEEE, pp. 1586–1589.

  28. Zhang, Y., Ma, Y., Dai, X., Li, H., Mei, X., & Ma, J. (2021). Locality-constrained sparse representation for hyperspectral image classification. Information Sciences, 546, 858–870.

    Article  MathSciNet  Google Scholar 

  29. Zhou, C., Tu, B., Ren, Q., Chen, S. (2021). Spatial peak-aware collaborative representation for hyperspectral imagery classification. IEEE Geoscience and Remote Sensing Letters.

  30. Mohan, A., Sapiro, G., & Bosch, E. (2007). SpatiallyCoherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images. IEEE Geoscience and Remote Sensing Letters, 4(2), 206.

    Article  Google Scholar 

  31. Wang, J., & Chang, C. I. (2006). Independent component analysis- based dimensionality reduction with applications in hyperspectral image analysis. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1586.

    Article  Google Scholar 

  32. Bruce, L. M., Koger, C. H., & Li, J. (2002). Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 40(10), 2331.

    Article  Google Scholar 

  33. Gou, J., Yang, Y., Yi, Z., Lv, J., Mao, Q., & Zhan, Y. (2020). Discriminative globality and locality preserving graph embedding for dimensionality reduction. Expert Systems with Applications, 144, 113079.

    Article  Google Scholar 

  34. Wu, L., Shen, C. H., & Hengel, A. V. D. (2017). Deep linear discriminant analysis on fisher networks: A hybrid architecture for person re-identification. Pattern Recognition, 65, 238–250.

    Article  Google Scholar 

  35. Lee, J. L., Park, D., & Lee, C. H. (2017). Feature selection algorithm for intrusions detection system using sequential forward search and random forest classifier. Ksii Transactions on Internet and Information Systems, 11(10), 5132–5148.

    Google Scholar 

  36. Peker, M., Arslan, A., Şen, B., Çelebi, F.V., But A. (2015). A novel hybrid method for determining the depth of anesthesia level: Combining ReliefF feature selection and random forest algorithm (ReliefF+ RF). In: 2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), IEEE, pp. 1–8.

  37. Vergara, J. R., & Estévez, P. A. (2014). A review of feature selection methods based on mutual information. Neural computing and applications, 24(1), 175–186.

    Article  Google Scholar 

  38. Lu, C.-Y., Min, H., Gui, J., Zhu, L., & Lei, Y.-K. (2013). Face recognition via weighted sparse representation. Journal of Visual Communication and Image Representation, 24(2), 111–116.

    Article  Google Scholar 

  39. Gan, Le., Xia, J., Peijun, Du., & Zhigang, Xu. (2017). Dissimilarity-weighted sparse representation for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 14(11), 1968–1972.

    Article  Google Scholar 

  40. Timofte, R., & Van Gool, L. (2014). Adaptive and weighted collaborative representations for image classification. Pattern Recognition Letters, 43, 127–135.

    Article  Google Scholar 

  41. Boyd, S., Parikh, N., & Chu, E. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Norwell: Now Publishers Inc.

    MATH  Google Scholar 

  42. Li, W., Du, Q., & Xion, M. (2015). Kernel collaborative representation with tikhonov regularization for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 12(1), 48–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Sharma.

Ethics declarations

Conflict of interest

The authors do not have any conflict of any interest.

Data Availability

I confirm that any code/data associated with this manuscript will be provided based on a reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Biswas, M. KLT-CRKCN: Hyperspectral Image Classification via Karhunen Loeve Transformation and Collaborative Representation-Based K Closest Neighbor. Wireless Pers Commun 123, 3347–3373 (2022). https://doi.org/10.1007/s11277-021-09292-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09292-4

Keywords

Navigation