Skip to main content
Log in

Novel Current Mirrors Based on Folded Flipped Voltage Follower Configuration

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An efficient low voltage, low input resistance, folded flipped voltage follower current mirror (F-FVFCM) has been proposed. This circuit is further utilized to design very high output resistance, folded cascode flipped voltage follower current mirror (FC-FVFCM). Small signal analysis has been done in order to theoretically analyse and show the improvements achieved by these proposed circuits. Simulations have been carried out by Mentor Graphics based EldoSpice using level 53 TSMC model for 0.18 µm CMOS technology. These results verify that proposed FC-FVFCM offers extremely low input resistance (43.5 Ω), reasonably high output resistance (6.93 MΩ) and very high bandwidth (1.73 GHz) while operating at a low voltage of 0.9 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of Data Material

Not applicable.

Code Availability

Not applicable.

References

  1. Laoudias, C., & Psychalinos, C. (2010). Universal biquad filters using low-voltage current mirrors. Analog Integrated Circuits and Signal Processing, 65(1), 77–88. https://doi.org/10.1007/s10470-010-9462-z

    Article  Google Scholar 

  2. Park, C. J., Onabajo, M., Geddada, H. M., Karsilayan, A. I., & Silva-Martinez, J. (2015). Efficient broadband current-mode adder-quantizer design for continuous-time sigma-delta modulators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(9), 1920–1930. https://doi.org/10.1109/TVLSI.2014.2353058

    Article  Google Scholar 

  3. Aggarwal, B., Gupta, M., & Gupta, A. K. (2016). A comparative study of various current mirror configurations: Topologies and characteristics. Microelectronics Journal, 53, 134–155. https://doi.org/10.1016/j.mejo.2016.04.015

    Article  Google Scholar 

  4. Safari, L., & Minaei, S. (2017). A low-voltage low-power resistor-based current mirror and its applications. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126617501808

    Article  Google Scholar 

  5. Tsirimokou, G., Psychalinos, C., Elwakil, A., & Maundy, B. (2018). Fractional-order multiphase sinusoidal oscillator design using current-mirrors. In 2018 41st International Conference on Telecommunications and Signal Processing (TSP) (pp. 1–4). IEEE. https://doi.org/10.1109/TSP.2018.8441399

  6. Ramirez-Angulo, J., Sawant, M. S., Lopez-Martin, A., & Carvajal, R. G. (2005). Compact implementation of high-performance CMOS current mirror. Electronics letters, 41(10), 570–572.

    Article  Google Scholar 

  7. Javad Azhari, S., Faraji Baghtash, H., & Monfaredi, K. (2011). A novel ultra-high compliance, high output impedance low power very accurate high performance current mirror. Microelectronics Journal, 42(2), 432–439. https://doi.org/10.1016/j.mejo.2010.10.004

    Article  Google Scholar 

  8. Zhang, X., & El-masry, E. I. (2004). A regulated body-driven CMOS current mirror for low-voltage applications. IEEE Transactions on Circuits and Systems—II: Express Briefs, 51(10), 571–577.

    Article  Google Scholar 

  9. Ramirez-Angulo, J., Carvajal, R. G., & Torralba, A. (2004). Low supply voltage high-performance CMOS current mirror with low input and output voltage requirements. IEEE Transactions on Circuits and Systems II: Express Briefs, 51(3), 124–129. https://doi.org/10.1109/TCSII.2003.822429

    Article  Google Scholar 

  10. Aggarwal, B., Gupta, M., & Gupta, A. K. (2013). Analysis of low voltage bulk-driven self-biased high swing cascode current mirror. Microelectronics Journal, 44(3), 225–235. https://doi.org/10.1016/j.mejo.2012.12.006

    Article  Google Scholar 

  11. Sackinger, E., & Guggenbuhl, W. (1990). A high-swing, high-impedance MOS cascode circuit. IEEE Journal of solid-state circuits, 25(1), 289–298. https://doi.org/10.1111/j.1551-2916.2009.03575.x

    Article  Google Scholar 

  12. Brooks, T. L., & Rybicki, M. A. (1994). Self-biased cascode current mirror having high voltage swing and low power consumption. United States Patent, 5,359,256.

  13. Garimella, A., Garimella, L., Ramirez-Angulo, J., Lopez-Martin, A. J., & Carvajal, R. G. (2005). Low-voltage high performance compact all cascode CMOS current mirror. Electronics letters, 41(25), 1359–1360.

    Article  Google Scholar 

  14. Baghtash, H. F., & Azhari, S. J. (2011). Very low input impedance low power current mirror. Analog Integrated Circuits and Signal Processing, 66(1), 9–18. https://doi.org/10.1007/s10470-010-9480-x

    Article  Google Scholar 

  15. Gupta, M., Aggarwal, B., & Gupta, A. K. (2013). A very high performance self-biased cascode current mirror for CMOS technology. Analog Integrated Circuits and Signal Processing, 75(1), 67–74. https://doi.org/10.1007/s10470-012-9994-5

    Article  Google Scholar 

  16. Luo, S. C., Huang, C. J., & Chu, Y. H. (2014). A wide-range level shifter using a modified wilson current mirror hybrid buffer. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(6), 1656–1665. https://doi.org/10.1109/TCSI.2013.2295015

    Article  Google Scholar 

  17. Kabirpour, S., & Jalali, M. (2020). A power-delay and area efficient voltage level shifter based on a reflected-output wilson current mirror level shifter. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(2), 250–254. https://doi.org/10.1109/TCSII.2019.2914036

    Article  Google Scholar 

  18. Hassen, N., Gabbouj, H. B., & Kamel, B. (2011). Low-voltage high-performance current mirrors: Application to linear linear voltage-to-current converter. International Journal of Circuit Theory and Applications, 39, 47–60. https://doi.org/10.1002/cta

    Article  Google Scholar 

  19. Laoudias, C., & Psychalinos, C. (2011). 1.5-V complex filters using current mirrors. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(9), 575–579. https://doi.org/10.1109/TCSII.2011.2161169

    Article  Google Scholar 

  20. Ramirez-Angulo, J., Garimella, S. R. S., Lopez-Martin, A. J., & Carvajal, R. G. (2006). Gain programmable current mirrors based on current steering. Electronics letters, 42(10), 559–560.

    Article  Google Scholar 

  21. Wan, Q., Xu, D., Zhou, H., & Dong, J. (2018). A complementary current-mirror-based bulk-driven down-conversion mixer for wideband applications. Circuits, Systems, and Signal Processing, 37(9), 3671–3684. https://doi.org/10.1007/s00034-017-0739-7

    Article  Google Scholar 

  22. Aguado-Ruiz, J., Lopez-Martin, A. J., & Ramirez-Angulo, J. (2012). Three novel improved CMOS C-multipliers. International Journal of Circuit Theory and Applications, 40(6), 607–616. https://doi.org/10.1002/cta

    Article  Google Scholar 

  23. Carvajal, R. G., Ramírez-Angulo, J., López-Martín, A. J., Torralba, A., Galán, J. A. G., Carlosena, A., & Chavero, F. M. (2005). The flipped voltage follower: A useful cell for low-voltage low-power circuit design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(7), 1276–1291. https://doi.org/10.1109/TCSI.2005.851387

    Article  Google Scholar 

  24. Ramírez-Angulo, J., Gupta, S., Padilla, I., Carvajal, R. G., Torralba, A., Jiménez, M., Munoz, F. (2005). Comparison of conventional and new flipped voltage structures with increased input/output signal swing and current sourcing/sinking capabilites. In Midwest Symposium on Circuits and Systems (pp. 1151–1154). https://doi.org/10.1109/MWSCAS.2005.1594310

  25. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2009). Analysis and design of analog integrated circuits (5th ed.). Don Fowley.

    Google Scholar 

  26. Shrivastava, A., Pandey, R., & Jindal, C. (2020). Low-voltage flipped voltage follower cell based current mirrors for high frequency applications. Wireless Personal Communications, 111(1), 143–161. https://doi.org/10.1007/s11277-019-06849-2

    Article  Google Scholar 

  27. Voo, T., & Toumazou, C. (1995). High-speed current mirror resistive compensation technique. Electronics Letters, 31(4), 248–250.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge Prof. Raj Senani for his valuable guidance and continuous support during the work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawna Aggarwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, B. Novel Current Mirrors Based on Folded Flipped Voltage Follower Configuration. Wireless Pers Commun 123, 645–653 (2022). https://doi.org/10.1007/s11277-021-09150-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09150-3

Keywords

Navigation