Skip to main content
Log in

EigenSpace-Based Generalized Sidelobe Canceler Applied for Sidelobe Suppression in Cognitive Radio Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) is the cutting-edge technique to intercept the hindrance of spectrum paucity. This is done by allowing the spectrum to be utilized dynamically. Orthogonal frequency division multiplexing (OFDM), a best multi-carrier method, is a promising contender of CR. This is because of the intrinsic characteristics like, the ability of changing its wave from, analyzing the spectrum and its ability to withstand to multipath channel effect. However, one of the main problems that OFDM-based CR systems experiences is high out-of-band (OOB) radiation. Suppression of high OOB radiation is significantly important because the interference to the licensed users (LUs) from neighboring users should be limited to the lowest possible level. In this manuscript, an innovative approach, Eigenspace-based generalized sidelobe canceler (EGSC) has been proposed for reducing high OOB radiation. The EGSC uses signal and noise subspaces for distinguishing the desired signals (the main lobes) and un-desired signals (the sidelobes). These sidelobes are the main cause of high OOB radiation. The signal and noise subspaces are constructed from the autocorrelation matrix of generalized sidelobe canceler (GSC). Finally, on projecting the weight vector of a GSC onto the signal subspace we get a new modified vector that reduces the un-desired signal in a better way. We show through simulations that our proposed technique achieves much better OOB radiation reduction, in terms of normalized power-spectral-density (PSD) as compared to the techniques found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

The authors declare that [the/all other] data supporting the findings of this study are available within the article [and its supplementary information files].

Code availability

All the simulations are done using MATLAB software and Custom Code will be available on request from the authors.

References

  1. Khozeimeh, F., & Haykin, S. (2012). Brain-inspired dynamic spectrum management for cognitive radio ad hoc networks. IEEE Transactions on Wireless Communications, 11(10), 3509–3517.

    Article  Google Scholar 

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  3. Haykin, S., Thomson, D. J., & Reed, J. H. (2009). Spectrum sensing for cognitive radio. Proceedings of the IEEE, 97(5), 849–877.

    Article  Google Scholar 

  4. Proakis, J. G., & Salehi, M. (2008). Salehi Digital Communications. McGraw-Hill.

    Google Scholar 

  5. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

  6. Van Nee, R., & Prasad, R. (2000). OFDM for wireless multimedia communications. Artech House, Inc.

  7. Farhang-Boroujeny, B., & Kempter, R. (2008). Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Communications Magazine, 46(4), 80–85.

    Article  Google Scholar 

  8. Mahmoud, H. A., Yücek, T., & Arslan, H. (2009). OFDM for cognitive radio: Merits and challenges. Wirel. Commun. IEEE, 16(2), 6–15.

    Article  Google Scholar 

  9. Weiss, T., Hillenbrand, J., Krohn, A., & Jondral F. K. (2004). Mutual interference in OFDM-based spectrum pooling systems. In Vehicular technology conference, 2004. VTC 2004-Spring. 2004 IEEE 59th (vol. 4, pp. 1873–1877).

  10. You, Z., Fang, J., & Lu, I.-T. (2014). Out-of-band emission suppression techniques based on a generalized OFDM framework. EURASIP J. Adv. Signal Process., 2014(1), 74.

    Article  Google Scholar 

  11. Huang, X., Zhang, J. A., & Guo, Y. J. (2015). Out-of-band emission reduction and a unified framework for precoded OFDM. IEEE Communications Magazine, 53(6), 151–159.

    Article  Google Scholar 

  12. Budiarjo, I., Nikookar, H., & Ligthart, L. P. (2008). Cognitive radio modulation techniques. IEEE Signal Processing Magazine, 25(6), 24–34.

    Article  Google Scholar 

  13. Mahmoud, H. A., & Arslan, H. (2008). Suppression of sidelobes in OFDM systems by adaptive symbol transition. IEEE Communications Letters, 12(2), 133–135.

    Article  Google Scholar 

  14. Mahmoud, H. A., & Arslan, H. (2008). Sidelobe suppression in OFDM-based spectrum sharing systems using adaptive symbol transition. Communications Letters IEEE, 12(2), 133–135.

    Article  Google Scholar 

  15. Cosovic, I., Brandes, S., & Schnell, M. (2006). Subcarrier weighting: A method for sidelobe suppression in OFDM systems. Communications Letters IEEE, 10(6), 444–446.

    Article  Google Scholar 

  16. Selim, A., & Doyle, L. (2013). Real-time sidelobe suppression for OFDM systems using advanced subcarrier weighting, In Wireless Communications and Networking Conference (WCNC). IEEE, 2013, 4043–4047.

  17. Pagadarai, S., Rajbanshi, R., Wyglinski, A. M., & Minden, G. J. (2008). Sidelobe suppression for OFDM-based cognitive radios using constellation expansion. In Wireless communications and networking conference, 2008. WCNC 2008. IEEE, 2008, pp. 888–893.

  18. Li, D., Dai, X., & Zhang, H. (2009). Sidelobe suppression in NC-OFDM systems using constellation adjustment. Communications Letters IEEE 13(5), 327–329.

    Article  Google Scholar 

  19. Yamaguchi, H. (2004). Active interference cancellation technique for MB-OFDM cognitive radio. In Microwave Conference, 2004. 34th European, vol. 2, pp. 1105–1108.

  20. Qu, D., Wang, Z., & Jiang, T. (2010). Extended active interference cancellation for sidelobe suppression in cognitive radio OFDM systems with cyclic prefix. IEEE Transactions on Vehicular Technology 59(4), 1689–1695.

    Article  Google Scholar 

  21. Alian, E. H. M., & Mitran, P. (2013). A phase adjustment approach for interference reduction in OFDM-based cognitive radios. IEEE Transactions on Wireless Communications, 12(9), 4668–4679.

    Article  Google Scholar 

  22. Kryszkiewicz, P., & Bogucka, H. (2013). Out-of-band power reduction in NC-OFDM with optimized cancellation carriers selection. IEEE Communications Letters, 17(10), 1901–1904.

    Article  Google Scholar 

  23. Brandes, S., Cosovic, I., & Schnell, M. (2005). Sidelobe suppression in OFDM systems by insertion of cancellation carriers. In Vehicular Technology Conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd, vol. 1, pp. 152–156.

  24. Brandes, S., Cosovic, I., & Schnell, M. (2006). Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers. IEEE Communications Letters, 10(6), 420–422.

    Article  Google Scholar 

  25. Selim, A., Macaluso, I., & Doyle, L. (2013). Efficient sidelobe suppression for OFDM systems using advanced cancellation carriers. In Communications (ICC). IEEE International Conference on, 2013, 4687–4692.

  26. El-Saadany, M. S., Shalash, A. F., & Abdallah, M., (2009). Revisiting active cancellation carriers for shaping the spectrum of OFDM-based cognitive radios. In Sarnoff Symposium, SARNOFF’09. IEEE, 2009, 1–5.

  27. Elahi, A., Qureshi, I. M., Zaman, F., & Munir, F. (2016). Reduction of out of band radiation in non-contiguous OFDM based cognitive radio system using heuristic techniques. Journal of Information Science and Engineering, 32(2), 349–364.

    Google Scholar 

  28. Elahi, A., Qureshi, I. M., Khan, Z. U., & Zaman, F. (2015). Sidelobe Reduction in Non-Contiguous OFDM-Based Cognitive Radio Systems Using a Generalized Sidelobe Canceller. Applied Sciences, 5(4), 894–909.

    Article  Google Scholar 

  29. You, Z., Fang, J., & Lu, I.-T. (2013). Combination of spectral and SVD precodings for out-of-band leakage suppression. In Systems, Applications and Technology Conference (LISAT). IEEE Long Island, 2013, 1–6.

  30. Xu, R., & Chen, M. (2009). A precoding scheme for DFT-based OFDM to suppress sidelobes. IEEE Communications Letters, 13(10), 776–778.

    Article  Google Scholar 

  31. Zhou, X., Li, G. Y., & Sun, G. (2011). Multiuser spectral precoding for ofdm-based cognitive radios. In Global Telecommunications Conference (GLOBECOM 2011). IEEE, 2011, 1–5.

  32. Zhou, X., Li, G. Y., & Sun, G. (2013). Multiuser spectral precoding for OFDM-based cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(3), 345–352.

    Article  Google Scholar 

  33. Ma, M., Huang, X., Jiao, B., & Guo, Y. J. (2011). Optimal orthogonal precoding for power leakage suppression in DFT-based systems. IEEE Transactions on Communications 59(3), 844–853.

    Article  Google Scholar 

  34. Pandey, A., Muneer, P., & Sameer, S. M. (2014). Two level precoding scheme for out of band radiation reduction in multiuser OFDM based cognitive radio. In. International Conference on Signal Processing and Communications (SPCOM), 2014, 1–5.

  35. Elahi, A., Qureshi, I. M., Atif, M., & Gul, N. (2017). “Sidelobe Reduction in Cognitive Radio Systems Using Hybrid Technique”, World Acad. Science Engineering Technology International Journal Electrical Computer Engineering Electronic Communication Engineering 11(3), 213–216.

    Google Scholar 

  36. Elahi, A. , Qureshi, I. M., Zaman, F., Gul, N. & Saleem, T. (2017). Suppression of Mutual Interference in Noncontiguous Orthogonal Frequency Division Multiplexing Based Cognitive Radio Systems,” Wireless Communications and Mobile Computing, vol. 2017.

  37. Elahi, A., Qureshi, I. M., Zaman, F., Munir, F. , & Umar, A. (2016). Techniques for the suppression of sidelobes in a non‑contiguous orthogonal frequency division multiplexing framework. Applied Informatics, 3:6(6).

  38. Elahi, A. , Qureshi, I. M., Gul, N., Khan, M. S., & Ullah, H. (2018). A Nature-Inspired Hybrid Technique for Interference Reduction in Cognitive Radio Networks. Cognitive Computation , pp. 1–11, 2018.

  39. Elahi, A., Qureshi, I. M. , Khan, S. U., Zaman, F., & Gul, N. Improved algorithms for interference suppression in non-contiguous orthogonal frequency division multiplexing-based cognitive radio systems,” Neural Computing and Applications, pp. 1–13.

  40. Khan, S. U., Qureshi, I. M., Zaman, F., Basit, A., & Khan, W. (2013). Application of firefly algorithm to fault finding in linear arrays antenna. World Applied Sciences Journal, 26(2), 232–238.

    Google Scholar 

  41. Kaleem, A., Haq, S., Elahi, A., & Gul, N. (2019). Minimization of OOB radiation in OFDM based cognitive radio system using multiple GSC. In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5.

  42. Hussain, S. A., Malik, A. N., Khan, Z. U., & Qureshi, I. M. (2014). Spectrum sharing in cognitive radio using GSC with suppressed sidelobes. IInternational Journal of Distributed Sensor Networks, 10(6), p. 418192.

  43. Ahmed, R., Elahi, A., Gull, N., Khan, S., & Khan, N. A. (2019). Minimization of Out Of Band radiations in Orthogonal Frequency Division Multiplexing Using Modified Generalize Sidelobe Canceler. In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5.

  44. Ahmed, R., Elahi, A., Ahmad, G., Ahmed, A., & Gull, N. (2020). Sidelobe minimization in Orthogonal Frequency Division Multiplexing Using efficient Generalize Sidelobe Canceler. In 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 674–678.

  45. Elahi, A., Ahmed, A., Gul, N., Ahmed, R., & Kamran, M. (2020). A Mongrel Technique for the Reducation of Sidelobes in OFDM–Based Cognitive Radio System. In 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 686–689.

  46. Johnson, D. H. , & Dudgeon, D. E. (1993). Array signal processing: concepts and techniques. PTR Prentice Hall Englewood Cliffs.

Download references

Funding

This research is not funded by any agency / department.

Author information

Authors and Affiliations

Authors

Contributions

AE, NG and SUK contributed in the design of Eigen Space – Based Generalized Sidelobe Canceler Applied for Sidelobe Suppression in Cognitive Radio Systems, simulations of the results and preparation of manuscript.

Corresponding author

Correspondence to Atif Elahi.

Ethics declarations

Conflict of interest

The Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elahi, A., Gul, N. & Khan, S.U. EigenSpace-Based Generalized Sidelobe Canceler Applied for Sidelobe Suppression in Cognitive Radio Systems. Wireless Pers Commun 121, 3009–3028 (2021). https://doi.org/10.1007/s11277-021-08861-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08861-x

Keywords

Navigation