Skip to main content
Log in

A Scalable and Utility Driven Profit Maximized Auction of Resources Model for Cloudlet Based Mobile Edge Computing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This manuscript discusses about mobile edge computing, mobile cloud computing and various cloudlet-based frameworks used in these computing. Various cloudlet-based computing frameworks are inter-cloudlet communication framework, FMCC and SKYR framework. Various problems faced by these frameworks and solution proposed in improved SKYR framework are discussed here. Improved SKYR framework effectively addresses the problem of dynamic consideration of yield factor of over provisioning and under provisioning. It also establishes relationship between the yield factor of availability and its dependent factors, which helps to improve the yield factor of availability. This paper also discusses about various pricing models suitable for data as a service (DaaS). It mentions the drawbacks of latest pricing model that is profit maximization incentive mechanism (PMIM) pricing model and provides a solution to tackle those problems with the proposed effective pricing model named as scalable and utility driven profit maximized auction of resources. This pricing model effectively considers the problem of granularity of task, cost of execution of offloaded task, utility efficiency (η) and marginal utility (mu) factors for PMIM pricing model and provides effective solution. The proposed pricing model also follows the principle of scalability which suggests that it can extent to accommodate dynamic resource providers and mobile users. This proposed pricing model is incorporated in SKYR framework which enables this framework as complete package to motivate resource providers and mobile devices to use it for various applications such as data as a service (DaaS), software as a service (SaaS) and network as a service (NaaS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., Foy, X., & Zhang, Y. (2018). Mobile edge cloud system: Architectures, challenges, and approaches. IEEE Journal of Engineering, Electrical and Computer Engineering, 12(3), 2495–2508.

    Google Scholar 

  2. Huerta-Canepa, G., & Lee, D. (2010). A virtual cloud computing provider for mobile devices. In proceedings of 1st ACM workshop on mobile cloud computing & services: Social networks and beyond (MCS’10). pp. 1–5.

  3. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for VM-based cloudlets in mobile computing. Journal of IEEE Pervasive Computing, 8(4), 14–23.

    Article  Google Scholar 

  4. Satyanarayanan, M. (2010). Mobile computing: The next decade. In Proceedings of 1st ACM workshop on mobile cloud computing & services: Social networks and beyond (MCS’10), pp. 2–10.

  5. Chun, B., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). CloneCloud: Elastic execution between mobile device and cloud. In proceedings of 6th conference on computer systems (EuroSys), pp. 301–314.

  6. Satyanarayanan, M., Lewis, G., Morris, E., Simanta, S., Boleng J., & Ha, K. (2013). The role of cloudlet in hostile environments. In Proceedings of IEEE conference on pervasive computing, pp. 40–49.

  7. Lewis, G., Echeverria, S., Simanta, S., Bradshaw, B., & Root, J. (2014). Tactical cloudlets: Moving cloud computing to the edge. In proceedings of IEEE military communications conference, pp. 1440–1446.

  8. Khan, A., Othman, M., Xia, F., & Khan, A. N. (2015). Context-aware mobile cloud computing and its challenges. IEEE Journal of Cloud Computing, 2(3), 42–49.

    Article  Google Scholar 

  9. Satyanarayanan, M. (2017). The emergence of edge computing. IEEE Journal of Computer, 50(1), 30–39.

    Article  Google Scholar 

  10. 10Satyanarayanan, M., Chen, Z., Ha, K., Hu, W., Richer W., & Pillai, P. (2014). Cloudlet: At the leading edge of mobile-cloud convergence. In proceedings of 6th international conference on mobile computing, application and services (MobiCASE), pp. 1–9.

  11. Zhang, Y., Guo, K., Ren, J., Zhou, Y., Wang, J., & Chen, J. (2017). Transparent computing: A promising network computing paradigm. IEEE Journal of Computing in Science and Engineering, 19(1), 7–20.

    Article  Google Scholar 

  12. Luong, N. C., Wang, P., Niyato, D., Yonggang, W., & Han, Z. (2016). Resource management in cloud networking using economic analysis and pricing models: A survey. IEEE Journal of Communications Surveys and Tutorials, 19(2), 954–1001.

    Article  Google Scholar 

  13. Hu, C. (2018). Calculation of the behavior utility of a network system: Conception and principle. Elsevier Journal of Engineering, 4(1), 78–84.

    Google Scholar 

  14. Hu, J., Bansal, M., & Mehrotra, S. (2018). Robust decision making using a general utility set. European Journal of Operational Research, 269(2), 699–714.

    Article  MathSciNet  Google Scholar 

  15. Sun, F., Liu, C., & Zhou, X. (2017). Utilities tunnel’s finance design for the process of construction and operation. Elsevier Journal of Tunnelling and Underground Space Technology, 69(1), 182–186.

    Article  Google Scholar 

  16. Fraley, A. E., & Sherman, D. H. (2018). Halogenase engineering and its utility in medicinal chemistry. Elsevier Journal of Bioorganic and Medicinal Chemistry Letters, 28(11), 1992–1999.

    Article  Google Scholar 

  17. Tadayon, S., & Tadayon, B. (2014). Approximate z-number evaluation based on categorical sets of probability distributions. In L. Zadeh, A., Abbasov, R., Yager, S., Shahbazova & M. Reformat (Eds.), Recent developments and new directions in soft computing. Studies in fuzziness and soft computing (Vol. 317). Cham: Springer. https://doi.org/10.1007/978-3-319-06323-2_8.

  18. Liu, P., Hendiani, S., Bagherpour, M., Ghannadpour, S. F., & Mahmoudi, A. (2019). Utility-numbers theory. IEEE Access, 7, 56994–57008.

    Article  Google Scholar 

  19. Chen, X., Jiao, L., Li, W., & Fu, X. (2016). Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808.

    Article  Google Scholar 

  20. Zhang, H., Guo, F., Ji, H., & Zhu, C. (2017). Combinational auction-based service provider selection in mobile edge computing networks. Journal of IEEE Access, 5, 13455–13464.

    Article  Google Scholar 

  21. Wang, Q., Guo, S., Liu, J., Pan, C., & Yang, L. (2019). Profit maximization incentive mechanism for resource providers in mobile edge computing. In proceedings of IEEE transactions on services computing, pp. 1–12.

  22. Boutaba, R., & Fonseca, N. L. S. (2015). Cloud architectures, networks, services, and management. Book Chapter, Cloud Services, Networking, and Management. Wiley. https://doi.org/10.1002/9781119042655.ch1.

  23. Sheng, Z., Mahapatra, C., Zhu, C., & Leung, V. (2015). Recent advances in industrial wireless sensor networks toward efficient management in IoT. Journal of IEEE Access, 3, 622–637.

    Article  Google Scholar 

  24. Zhu, C., Leung, V., Shu, L., & Ngai, E. (2015). Green internet of things for smart world. Journal of IEEE Access, 3, 2151–2162.

    Article  Google Scholar 

  25. Vaquero, L. M., & Rodero-Merino, L. (2014). Finding your way in the fog: Towards a comprehensive definition of fog computing. Journal of ACM SIGCOMM Computer Communication Review, 44(5), 27–32.

    Article  Google Scholar 

  26. Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing: Concepts. In proceedings of workshop mobile big data, pp. 37–42.

  27. Stojmenovic, I., & Wen, S. (2014). The fog computing paradigm: Scenarios and security issues. In proceedings of federated conference on computer science and information system, pp. 1–8.

  28. Madsen, H., Albeanu, G., Burtschy, B., & Popentiu-Vladicescu, F. (2013). Reliability in the utility computing era: Towards reliable fog computing. In: proceedings of 20th international conference of system signals image processing, pp. 43–46.

  29. Fernando, N., Loke, S. W., & Rahayu, J. W. (2012). Mobile cloud computing: A survey. Elsevier Journal of Future Generation Computer System, 29(1), 84–106.

    Article  Google Scholar 

  30. Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Journal of Internet of Things, 3(6), 854–864.

    Article  Google Scholar 

  31. Delgrossi, L., & Zhang, T. (2012). Vehicle safety communications: Protocols, security, and privacy. Hoboken: Wiley.

    Book  Google Scholar 

  32. Zhang, T., Antunes, H., & Aggarwal, S. (2014). Defending connected vehicles against malware: Challenges and a solution framework. IEEE Journal of Internet of Things, 1(1), 10–21.

    Article  Google Scholar 

  33. Zhang, T., Antunes, H., & Aggarwal, S. (2014). Securing connected vehicles end to end. Detroit: SAE world congress and exhibition.

    Google Scholar 

  34. Kitanov, S., Monteiro, E., & Janevski, T., (2016). 5G and the fog - survey of related technologies and research directions. In proceedings of 18th mediterranean electrotechnical conference (MELECON).

  35. Wang, C., Haider, F., Gao, X., You, X., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communication Magazine, 52(2), 122–130.

    Article  Google Scholar 

  36. Wang, X., Chen, M., & Haleb, T. (2014). Cache in the air: Exploiting content caching and delivery techniques for 5G systems. IEEE Communication Magazine, 52(2), 131–139.

    Article  Google Scholar 

  37. 37Janevski, T. (2009). 5G mobile phone concept. In proceedings of 6th IEEE consumer communications and networking conference (CCNC), pp. 1–2.

  38. Soldaniz, D., & Mazalini, A. (2014). 5G: The nervous system of the true digital society. IEEE Journal of COMSOC MMTC E-letter, 9(5), 5–9.

    Google Scholar 

  39. Tudzarov, A., & Janevski, T. (2011). Functional architecture for 5G mobile networks. International Journal of Advanced Science and Technology (IJAST), 32, 65–78.

    Google Scholar 

  40. Gupta, A., & Jha, R. K. (2015). A Survey of 5G network: Architecture and emerging technologies. Journal of IEEE Access, 3, 1206–1232.

    Article  Google Scholar 

  41. Agyapong, P. K., Iwamura, M., Staehle, D., Kiess, W., & Benjebbour, A. (2014). Design considerations for a 5G network architecture. IEEE Communication Magazine, 52(11), 65–75.

    Article  Google Scholar 

  42. Wang, J., Wu, Y., Yen, N., Guo, S., & Cheng, Z. (2016). Big data analytics for emergency communication Networks: A survey. IEEE Journal of Communications Surveys and tutorials, 18(3), 1758–1778.

    Article  Google Scholar 

  43. Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107.

    Article  Google Scholar 

  44. Chen, X., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. Journal of IEEE Access, 2, 514–525.

    Article  Google Scholar 

  45. Sharma, S., & Mangat, V. (2015). Technology and trends to handle big data: survey. In proceedings of 5th international conference on advanced computing communication technologies, pp. 266–271.

  46. Rawadi, J. M., Artail, H., & Safa, H. (2014). Providing local cloud service to mobile devices with intercloudlet communication. In proceedings of 17th IEEE mediterranean electrotechnical conference, Beirut, Lebanon, pp. 134–138.

  47. Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., & Kunze, M. (2011). Cloud federation. In proceeding of 2nd international conference of cloud computing, GRIDs and virtualization, pp. 32–38.

  48. Mehrotra, N., & Dangwal, N. (2011). Interoperate in cloud with federation. Infosys technical report.

  49. Petcu, D., Craciun, C., & Rak, M. (2011). Towards a cross platform cloud API: components for cloud federation. In proceeding of closer, pp. 166– 169.

  50. Wen, Y., Zhang, W., & Luo, H. (2012). Energy-optimal mobile application execution: Taming resource-poor mobile devices with cloud clones. In proceeding of IEEE Infocom, pp. 2716–2720.

  51. Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R., & Bahl, P. (2010). MAUI: Making smartphones last longer with code offload. In proceeding of 8th ACM mobisys, pp. 49–62.

  52. Artail, A., Frenn, K., Artail H., & Safa, H. (2015). A framework of mobile cloudlet center based on the use of mobile devices as cloudlets. In proceedings of 29th IEEE international conference on advanced information networking and applications, pp. 777–784.

  53. Bernstein, D., & Vij, D. (2010). Intercloud directory and exchange protocol detail using XMPP and RDF. In proceeding of IEEE 6th world congress on services, pp. 431–438.

  54. Fawaz, A., Hojaij, A., Kobeissi, H., & Artail, H. (2011). An on-demand mobile advertising system that protects source privacy using interest aggregation. In proceeding of 7th IEEE international conference on wireless and mobile computing, networking and communications, pp. 127–134.

  55. Kumar, R., & Yadav, S. K. (2017). Scalable key parameter yield of resources model for performance enhancement in mobile cloud computing. Springer Journal of Wireless Personal Communications, 95(4), 3969–4000.

    Article  Google Scholar 

  56. Korrapati, R. (2014). Validated management practices. A.H.W.Sameer series. Diamond pocket books. https://books.google.co.in/books?id=z4psBQAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false.

  57. Tsai, L., & Liao, W. (2016). Allocation of virtual machines, In Virtualized cloud data center networks: Issues in resource management (pp. 1–51). Springer briefs in electrical and computer engineering. https://doi.org/10.1007/978-3-319-32632-0.

  58. Tsakalozos, K., Kllapi, H., Sitaridi, E., Roussopoulos, M., Paparas, D., & Delis, A. (2011). Flexible use of cloud resources through profit maximization and price discrimination. In proceedings of IEEE international conference on data engineering (ICDE), Hannover, Germany, pp. 75–86.

  59. McAfee, R. P., & McMillan, J. (1987). Auctions and bidding. Journal of economic literature, 25(2), 699–738.

    Google Scholar 

  60. Chui, K., & Zwick, R., (1999). Auction on the internet-a preliminary study. [Online]. http://repository.ust.hk/ir/Record/1783.1-1035.

  61. Lucking-Reiley, D. (2000). Vickrey auctions in practice: From nineteenth century philately to twenty-first-century e-commerce. The Journal of Economic Perspectives, 14(3), 183–192.

    Article  Google Scholar 

  62. Kuang, Z., Guo, S., Liu, J., & Yang, Y. (2017). A quick-response framework for multi-user computation offloading in mobile cloud computing. Science Direct Journal of Future Generation Computer System, 81, 166–176.

    Article  Google Scholar 

  63. Wang, Q., Guo, S., Wang, Y., & Yang, Y. (2019). Incentive mechanism for edge cloud profit maximization in mobile edge computing. In proceedings of IEEE international conference on communications (ICC), Shanghai, China, pp. 1–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.K., Kumar, R. A Scalable and Utility Driven Profit Maximized Auction of Resources Model for Cloudlet Based Mobile Edge Computing. Wireless Pers Commun 119, 527–565 (2021). https://doi.org/10.1007/s11277-021-08223-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08223-7

Keywords

Navigation