Skip to main content
Log in

Finding Mobility Pattern of Movable Target in Wireless Sensor Networks by Crowdsourcing Designed Mechanism

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Target tracking in wireless sensor networks is one of the well-known applications of such networks. The use of sensor-based electronic devices is becoming widespread and can be used for target tracking method. The obvious feature of these networks based on crowdsourcing mechanism is that the sensor nodes can be mobile. This paper presents a target tracking in a wireless sensor network which is generated by a crowdsourcing mechanism. The path of the target tracking has been extracted through SIR particle filter and statistical analysis model. Because of knowing the direction of the target movement can be effective in predicting the pursuit nodes and reducing of energy consumption, the proposed target tracking algorithm is based on prediction. The simulation results of the proposed algorithm on a wireless sensor network has been concluded by NS2 package. More effective target tracking algorithms can be presented by means of achieved mobility pattern in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sohraby, K., Minoli, D., & Znati, T. (2007). Wirless sensor networks. Hoboken: Wiley.

    Book  Google Scholar 

  2. Karl, H., & Willig, A. (2005). Protocols and architectures for wireless sensor networks. Hoboken: Wiley.

    Book  Google Scholar 

  3. Dhurandher, S. K., Obaidat, M. S., & Gupta, M. (2012). Providing reliable and link stability-based geocasting model in underwater environment. International Journal of Communication Systems, 25(3), 356–375.

    Article  Google Scholar 

  4. Chen, W. M., Li, C. S., Chiang, F. Y., & Chao, H. C. (2007). Jumping ant routing algorithm for sensor networks. Computer Communications, 30(14–15), 2892–2903.

    Article  Google Scholar 

  5. Misra, S., Oommen, B. J., Yanamandra, S., & Obaidat, M. S. (2010). Random early detection for congestion avoidance in wired networks: A discretized pursuit learning-automata-like solution. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 40(1), 66–76.

    Article  Google Scholar 

  6. Ho, A. H., Ho, Y. H., & Hua, K. A. (2010). Handling high mobility in next-generation wireless ad hoc networks. International Journal of Communication Systems, 23(9–10), 1078–1092.

    Article  Google Scholar 

  7. Zhang, Z. J., Fu, J. S., & Chao, H. C. (2013). An energy-efficient motion strategy for mobile sensors in mixed wireless sensor networks. International Journal of Distributed Sensor Networks, 1, 2013.

    Google Scholar 

  8. Schwiebert, L., Gupta, S. K. S., & Weinmann, J. (2001). Research challenges in wireless networks of biomedical sensors. In Proceedings of the 7th annual international conference on Mobile computing and networkingMobiCom’01 (pp. 151–165).

  9. Ojha, T., & Misra, S. (2013). MobiL: A 3-dimensional localization scheme for mobile underwater sensor networks. In 2013 National conference on communications (NCC) (pp. 0–4).

  10. Misra, S., & Jain, A. (2011). Policy controlled self-configuration in unattended wireless sensor networks. Journal of Network and Computer Applications, 34(5), 1530–1544.

    Article  Google Scholar 

  11. Cao, N., Brahma, S., & Varshney, P. K. (2015). Target tracking via crowdsourcing: A mechanism design approach. IEEE Transactions on Signal Processing, 63(6), 1464–1476.

    Article  MathSciNet  Google Scholar 

  12. Misra, S., & Singh, S. (2012). Localized policy-based target tracking using wireless sensor networks. ACM Transactions on Sensor Networks, 8(3), 1–30.

    Article  Google Scholar 

  13. Chandrasekar Ramachandran, R., Misra, S., & Obaidat, M. S. (2008). A probabilistic zonal approach for swarm-inspired wildfire detection using sensor networks. International Journal of Communication Systems, 21, 1047–1073.

    Article  Google Scholar 

  14. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.

    Article  Google Scholar 

  15. Bai, F., & Helmy, A. (2004). A survey of mobility models in wireless adhoc networks. In Wireless adhoc networks. University of Southern California, USA (pp. 1–30).

  16. Aschenbruck, N., & Gerhards-Padilla, E. (2008). A survey on mobility models for performance analysis in tactical mobile networks. Journal of Telecommunications and Information Technology, 2, 54–61.

    Google Scholar 

  17. Haerri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Communications Surveys & Tutorials, 11(4), 19–41.

    Article  Google Scholar 

  18. Chen, M., Wang, X., Kwon, T., & Chao, H. C. (2011). Multiple mobile agents’ itinerary planning in wireless sensor networks: Survey and evaluation. IET Communications, 5(12), 1769–1776.

    Article  Google Scholar 

  19. Jardosh, A. P., Belding-Royer, E. M., Almeroth, K. C., & Suri, S. (2005). Real-world environment models for mobile network evaluation. IEEE Journal on Selected Areas in Communications, 23(3), 622–632.

    Article  Google Scholar 

  20. Le Boudec, J., & Vojnovi, M. (2005). Perfect simulation and stationarity of a class of mobility models. In Proceedings of the IEEE Infocom, Miami, FL, USA (pp. 2743–2754).

  21. Maeda, K., Sato, K., Konishi, K., Yamasaki, A., & Uchiyama, A. (2005). Getting urban pedestrian flow from simple observation: Realistic mobility generation in wireless network simulation categories and subject descriptors. In Proceedings of the 8th ACM/IEEE international symposium on modeling, analysis and simulation of wireless and mobile systems, Montreal, Canada (pp. 151–158).

  22. Einstein, A. (1956). Investigation on the theory of the Brownian movement. Mineola: Dover Publications.

    MATH  Google Scholar 

  23. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. pp. 153–181.

  24. Royer, E. M., Melliar-smitht, P. M., & Mosert, L. E. (2001). An analysis of the optimum node density for ad hoc mobile networks. In Proceedings of the IEEE international conference on communications, Helsinki (pp. 857–861).

  25. Liang, B., & Haas, Z. J. (1999). Predictive distance-based mobility management for PCS networks. In Proceedings of the INFOCOM, New York, NY, USA (pp. 1377–1384).

  26. Hsu, W., Merchant, K., Shu, H., Hsu, C., & Helmy, A. (2005). Weighted waypoint mobility model and its impact on ad hoc networks. Mobile Computing and Communications Review, 5, 1769–1776.

    Google Scholar 

  27. Tuduce, C., & Gross, T. (2005). A mobility model based on WLAN traces and its validation. In Proceedings of the IEEE Infocom Miami, FL, USA (vol. 1, no. c, pp. 664–674).

  28. Jain, R., & Lelescu, D. (2005). Model T: An empirical model for user registration patterns in a campus wireless LAN. In The 11th annual international conference on mobile computing and networking, Cologne, Germany (pp. 170–184).

  29. Lelescu, D., Kozat, C., Jain, R., & Balakrishnan, M. (2006). Model T ++: An empirical joint space-time registration model categories and subject descriptors. In Proceedings of the ACM MOBIHOC, Florence, Italy (pp. 61–72).

  30. Yoon, J., Noble, B. D., Liu, M., Arbor, A., & Kim, M. (2006). Building realistic mobility models from coarse-grained traces. In Proceedings of the ACM MobiSys, Uppsala, Sweden (pp. 170–199).

  31. Kim, M., Kotz, D., & Kim, S. (2006). Extracting a mobility model from real user traces. In Proceedings of the IEEE INFOCOM, Barcelona, Spain (pp. 1–13).

  32. Hsu, W., Spyropoulos, T., Psounis, K., & Helmy, A. (2007). Modeling time-variant user mobility in wireless mobile networks. In Proceedings of the IEEE INFOCOM, Anchorage, AK (pp. 758–766).

  33. Kaist, K. L., Ncsu, S. H., Joon, S., & Ncsu, K. (2009). SLAW: A mobility model for human walks. In Proceedings of the IEEE INFOCOM, Rio de Janeiro, Brazil (pp. 855–863).

  34. Aschenbruck, N., Munjal, A., & Camp, T. (2011). Trace-based mobility modeling for multi-hop wireless networks. Computer Communications, 34(6), 704–714.

    Article  Google Scholar 

  35. Yang, W., Wang, Y., Tseng, Y., & Lin, B. P. (2010). Energy-efficient network selection with mobility pattern awareness in an integrated WiMAX and WiFi network. International Journal of Communication Systems, 23, 213–230.

    Article  Google Scholar 

  36. Hong, J., & Kim, H. (2011). An empirical framework for user mobility models: Refining and modeling user registration patterns. Journal of Computer and System Sciences, 77(5), 869–883.

    Article  MathSciNet  Google Scholar 

  37. Bettstetter, C. (2001). Mobility modeling in wireless networks: Categorization, smooth movement, and border effects. ACM SIGMOBILE Mobile Computing and Communications Review, 5(3), 55–66.

    Article  Google Scholar 

  38. Mascolo, C. (2007). Designing mobility models based on social network theory. ACM SIGMOBILE Mobile Computing and Communications Review, 1(2), 59–70.

    Google Scholar 

  39. Cho, E. (2011). Friendship and mobility: User movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, San Diego, CA, USA (pp. 1082–1090).

  40. Wang, J., Yuan, J., Shan, X., Feng, Z., Geng, J., & You, I. (2011) SaMob: A social attributes based mobility model for ad hoc networks. In Proceedings of the fifth international conference on innovative mobile and internet services in ubiquitous computing, Seoul, Korea (pp. 444–449).

  41. Thakur, G. S., & Kumar, U. (2012). Gauging human mobility characteristics and its impact on mobile routing performance. International Journal of Sensor Networks, 11(3), 179–191.

    Article  MathSciNet  Google Scholar 

  42. Vastardis, N., & Yang, K. (2012). An enhanced community-based mobility model for distributed mobile social networks. Journal of Ambient Intelligence and Humanized Computing, 5, 1–11.

    Google Scholar 

  43. Sung, T., & Yang, C. (2010). An adaptive joining mechanism for improving the connection ratio of ZigBee wireless sensor networks. International Journal of Communication Systems, 70, 231–251.

    Article  Google Scholar 

  44. Khan, R., Madani, S. A., Hayat, K., & Khan, S. U. (2012). Clustering-based power-controlled routing for mobile wireless sensor networks. International Journal of Communication Systems, 25(4), 529–542.

    Article  Google Scholar 

  45. Misra, S., Singh, S., Khatua, M., & Obaidat, M. S. (2015). Extracting mobility pattern from target trajectory in wireless sensor networks. International Journal of Communication Systems, 28, 213–230.

    Article  Google Scholar 

  46. Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.

    Article  Google Scholar 

  47. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference system sciences (pp. 1–10).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Dehdasht-Heydari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehdasht-Heydari, R., Kavand, H. Finding Mobility Pattern of Movable Target in Wireless Sensor Networks by Crowdsourcing Designed Mechanism. Wireless Pers Commun 109, 963–980 (2019). https://doi.org/10.1007/s11277-019-06599-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06599-1

Keywords

Navigation