Skip to main content
Log in

Hybrid Anomaly Detection by Using Clustering for Wireless Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Performance of wireless sensor network are highly prone to network anomalies particularly to misdirection attacks and blackhole attacks. Therefor intrusion detection system has a key role in WSN and it’s essential in security application. However the identification of active attacks is cumbersome in many cases particularly for remote sensing applications. This paper proposes hybrid anomaly detection method for misdirection and blackhole attacks by employing K-medoid customized clustering technique. A synthetic dataset was established by defining network parameters and threshold values were obtained to detect the anomalies. Experimental work was performed on network simulator (NS-2) and R studio. The proposed algorithm successfully detect the hybrid anomalies with high accuracy. This work is suitable for hybrid anomaly detection including misdirection and blackhole attacks in wireless environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nishani, L., & Biba, M. (2016). Machine learning for intrusion detection in MANET: A state-of-the-art survey. Journal of Intelligent Information Systems, 46(2), 391–407.

    Article  Google Scholar 

  2. Pachauria, G., & Sharma, S. (2015). Anomaly detection in medical wireless sensor networks using machine learning algorithms. Procedia Computer Science, 70, 325–333.

    Article  Google Scholar 

  3. Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H.-P. (2015). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. Procedia Computer Science, 70, 325–333.

    Article  Google Scholar 

  4. Kavitha, P., & Usha, M. (2014). Cluster based anomaly detection in wireless LAN. International Journal of Computer Trends and Technology (IJCTT), 12(5), 227–230.

    Article  Google Scholar 

  5. Kalaiselvan, K., & Singh, G. (2015). Detection and isolation of black hole attack in wireless sensor networks. International Journal of Innovative Research in Science, Engineering and Technology, 4(5), 3516–3524.

    Google Scholar 

  6. Kaur, R., Sharma, D., & Kaur, N. (2013). Comparative analysis of leach and its descendant protocols in wireless sensor network. International Journal of P2P Network Trends and Technology, 3(1), 51–55.

    Google Scholar 

  7. Almomani, I., Al-Kasasbeh, B., & AL-Akhras, M. (2016). WSN-DS: A dataset for intrusion detection systems in wireless sensor networks. Journal of Sensors, 2016, Article ID 4731953.

  8. Shi, Qiong, Qin, Li, Song, Lipeng, Zhang, Rongping, & Jia, Yanfeng. (2017). A dynamic programming model for internal attack detection in wireless sensor networks. Discrete Dynamics in Nature and Society, 2017, 1–9.

    Article  MATH  Google Scholar 

  9. Hou, X., Lei, C.-U., & Kwok, Y.-K. (2017). OP-DCI: A riskless K-means clustering for influential user identification in MOOC forum. In 16th IEEE international conference on machine learning and applications (ICMLA) (pp. 936–939).

  10. Alipour, H., Al-Nashif, Y. B., Satam, P., & Hariri, S. (2015). Wireless anomaly detection based on IEEE 802.11 behavior analysis. IEEE Transactions on Information Forensics and Security, 10(10), 2158–2170.

    Article  Google Scholar 

  11. Garcia-Font, V., Garrigues, C., & Rifà-Pous, H. (2016). A comparative study of anomaly detection techniques for smart city wireless sensor networks. In Lu, R. (Ed.) Sensors, Vol. 16, no. 6, Basel, Switzerland.

  12. Shah, Z., & Patel, R. (2016). Misdirection attack in wireless sensor network: A survey. International Journal for Technological Research in Engineering, 3(9), 2044–2047.

    Google Scholar 

  13. Gao, H., Wu, R., Cao, M., & Zhang, C. (2014). Detection and defense technology of blackhole attacks in wireless sensor network. In X. Sun et al. (Eds.), Algorithms and architectures for parallel processing (pp. 601–610). Cham: Springer.

    Chapter  Google Scholar 

  14. Syarif, I., Prugel-Bennett, A., & Wills, G. (2012). Unsupervised clustering approach for network anomaly. In R. Benlamri (Ed.), Networked digital technologies. Communications in computer and information science (Vol. 293, pp. 135–145). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, B., Jian, W., Ali, Z.A. et al. Hybrid Anomaly Detection by Using Clustering for Wireless Sensor Network. Wireless Pers Commun 106, 1841–1853 (2019). https://doi.org/10.1007/s11277-018-5721-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5721-6

Keywords

Navigation