Skip to main content

Advertisement

Log in

Maximizing the Network Life Time of Wireless Sensor Networks Using a Mobile Charger

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In Wireless Sensor Networks (WSN) the wireless nodes work untethered and have limited power resource. Wireless charging provides an alternative approach to recharge the batteries of the wireless nodes. Localization provides the position information. Previous works have considered either on recharging techniques or on the localization. This paper proposes a wireless recharging and also localization using a single mobile anchor. First the mobile anchor locates the static node later it receives the battery level. Finally if the battery of the static node is lesser than the threshold limit β, it recharges the static nodes wirelessly. Also the mobile anchor follows an energy efficient path V curve algorithm. The proposed method can handle the dynamic energy demand efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bachrach, J., & Taylor, C. (2005). Localization in sensor networks. In Handbook of sensor networks: Algorithms and architecture. Hoboken: Wiley. https://doi.org/10.1002/047174414x.ch9.

  2. Xiao, B., Chen, H., & Zhou, S. (2008). Distributed localization using a moving beacon in wireless sensor networks. IEEE Transaction on Parallel and Distributed Systems, 19(5), 587–600.

    Article  Google Scholar 

  3. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS less low cost outdoor localization for very small devices. IEEE Personal Communication, 7(5), 28–34.

    Article  Google Scholar 

  4. Ou, C.-H., & Ssu, K.-F. (2008). Sensor position determination with flying anchors in three dimensional wireless sensor networks. IEEE Transaction on Mobile Computing, 7(9), 1084–1097. https://doi.org/10.1109/TMC.2008.39.

    Article  Google Scholar 

  5. Ou, C.-H., & He, W.-L. (2013). Path planning algorithm for mobile anchor—based loaclization in wireless sensor networks. IEEE Sensor Journal, 13(2), 466–475.

    Article  Google Scholar 

  6. Wan, C., Li, J., Ye, F., & Yang, Y. (2017). A novel framework of multi: Hop wireless charging for sensor networks using resonant repeaters. IEEE Transaction on Mobile Computing, 16(3), 617–633.

    Article  Google Scholar 

  7. Zhao, F., & Goibas, L. (2004). Wireless sensor networks: An information processing approach. Elseivier: Morgan Kaufmann Publishers.

    Google Scholar 

  8. He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher T. (2003). Range free localization schemes for large scale sensor networks. In Proceedings of 9th annual international conference on mobile computing and networking (Vol. 8, pp. 81–95). New York: ACM Press. https://dx.doi.org/10.1145/938985.938995.

  9. Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (1997). Global positioning system: Theory and practice (4th ed.). Berlin: Springer.

    Google Scholar 

  10. Ingelrest, F., Barrenxea, G., Schafer, G., Vetterli, M., Couaeh, O., & Parlange, M. (2010). Sensor scope: Application—specific sensor network for environmentalmonitoring. ACM Transaction Sensor Networks, 6(2), 1–32.

    Article  Google Scholar 

  11. Razazadeh, J., Moradi, M., & Ismail, A. S. (2014). Superior path planning mechanism for mobile beacon—Assisted localization in wireless sensor networks. IEEE Sensor Journal, 14(9), 3052–3064. https://doi.org/10.1109/jsen.2014.2322958.

    Article  Google Scholar 

  12. Kousonikolas, D. M., Das, S. M., & Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Science Direct Computer Communications, 30, 2577–2592.

    Article  Google Scholar 

  13. Ssu, K.-F., Ou, C.-H., & Jiau, H. C. (2003). Localization with mobile anchor points in wireless sensor networks. IEEE Transaction on Vehicular Technology, 54(3), 1187–1197.

    Article  Google Scholar 

  14. Langendoen, K., & Reijers, N. (2003). Distributed localization in WSN: A quantitative comparison. Computer Networks, 43(4), 499–518.

    Article  MATH  Google Scholar 

  15. Magadevi, N., & Kumar, V. J. S. (2017). Energy efficient obstacle avoidance path planning trajectory for localization for WSN. Cluster Computing, pp. 1–7. https://doi.org/10.1007/s10586-017-1098-7.

  16. Niculescu, D., & Nath, B. (2001). Adhoc positioning system. In Proceedings of IEEE global communications (GlobeCom 01). San Antonio, TX, USA, pp. 2926–2931.

  17. Niculescu, D., & Nath, B. (2003). Adhoc positioning system using AoA. In Proceedings of IEEE INFOCOM’03, San Francisco, CA, pp. 1734–1743. https://dx.doi.org/10.1109/infcom.2003.1209196.

  18. Perrig, A., Stankovic, J., & Wagner, D. (2004). Security in wireless sensor networks. Communication ACM, 47(6), 53–57.

    Article  Google Scholar 

  19. Priyantha, N. B., Miu A. K., Balakrishnan, H., & Teller, S. (2001). The cricket compass for context aware mobile applications. In 7th ACM international conference on mobile computing and networking, Rome, Italy.

  20. Huang, R., & Zaruba, G. V. (2007). Static path planning for mobile beacons to localize sensor networks. In Proceedings of fifth annual IEEE international conference on pervasive computing and communications workshop, (PerComW), White Plains, NY, USA, pp. 323–330. http://doi.org/10.1109/PERCOMW.2007.109

  21. Shang, Y., Ruml, W., Zhang., Y., & Fromherz, M. (2003). Localization from mere connectivity. In Proceedings of ACM symposium on mobile Adhocnetworking and computing, Annapolis, Maryland, USA, pp. 201–212.

  22. Sichitiu, M. L., & Ramadurai, V. (2004). Localization of wireless sensor networks with a mobile beacon. In Proceedings of IEEE international conference on mobile Adhoc and sensor systems.

  23. Liu, T., Baijim, W., Hongyi, W., & Peng, J. (2017). Low cost collaborative mobile charging for large scale wireless sensor networks. IEEE Transaction on Mobile Computing, 16(8), 2213–2227.

    Article  Google Scholar 

  24. Shu, Y., Shin, K. G., Chen, J., & Sun, Y. (2017). Joint energy replenishment and operation scheduling in wireless rechargeable sensor networks. IEEE Transaction on Industrial Informatics, 13(1), 125–133.

    Article  Google Scholar 

  25. Zhang, W., & Cao, G. (2004). DCTC: Dynamic convoy tree based collaboration for target tracking in sensor networks. IEEE Transaction on Wireless communication, 3(5), 1689–1701. https://doi.org/10.1109/TWC.2004.833443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Magadevi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magadevi, N., Kumar, V.J.S. & Suresh, A. Maximizing the Network Life Time of Wireless Sensor Networks Using a Mobile Charger. Wireless Pers Commun 102, 1029–1039 (2018). https://doi.org/10.1007/s11277-017-5131-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5131-1

Keywords

Navigation