Skip to main content

Advertisement

Log in

Achieving Bandwidth Efficiency by Improved Zero-Forcing Combining Algorithm in Massive MIMO

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Massive multiple-input multiple-output (MIMO) or large scale MIMO (LS-MIMO) systems indicate the usage of very large number of antennas at Base Stations to communicate with comparatively small number of user terminals. The concept of LS-MIMO systems has gained so much popularity in recent years because of two main benefits, sufficient improvement in Energy Efficiency and Bandwidth Efficiency (BE). Certain factors such as length of coherence block, hardware design, pilot contamination, receive/transmit combining techniques and other design parameters limit the performance of LS-MIMO systems. In this paper our goal is to improve BE of LS-MIMO systems in multi-cell scenarios. We present an improved version of zero-forcing algorithm and based on this algorithm, we derive new equations for achievable rates and signal-to-interference-plus-noise ratio in uplink and downlink. We compare our algorithm with the two fundamental receive combining algorithms such as maximum ratio combining and zero-forcing, results show sufficient improvement in the performance of our LS-MIMO system in terms of BE. Then we change different system parameters such as coherence block length, signal-to-noise ratio and reveal their impact on the performance of system .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, D., Wang, J., You, X., Wang, Y., Chen, M., & Hou, X. (2013). Spectral efficiency of distributed MIMO systems. IEEE Journal on Selected Areas in Communications, 31(10), 2112–2127.

    Article  Google Scholar 

  2. Wang, J., Zhu, H., & Gomes, N. (2012). Distributed antenna systems for mobile communications in high speed trains. IEEE Journal on Selected Areas in Communications, 30(4), 675–683.

    Article  Google Scholar 

  3. Ngo, H. Q., Suraweera, H. A., Matthaiou, M., & Larsson, E. G. (2014). Multipair full-duplex relaying with massive arrays and linear processing. IEEE Journal on Selected Areas in Communications, 32(9), 1721–1737.

    Article  Google Scholar 

  4. Suraweera, H. A., Ngo, H. Q., Duong, T. Q., Yuen, C., & Larsson, E. G. (2013). Multi-pair amplify-and-forward relaying with very large antenna arrays. In Proceedings of IEEE ICC, Budapest, Hungary (pp. 3228–3233).

  5. Ngo, H. Q., & Larsson, E. G. (2013). Spectral efficiency of the multipair two-way relay channel with massive arrays. In Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacic Grove, CA, USA (pp. 275–279).

  6. Larsson, E. G., Tufvesson, F., Edfors, O., & Marzetta, T. L. (2013). Massive MIMO for next generation wireless systems. arXiv:1304.6690v2

  7. Zakhour, R., & Hanly, S. V. (2012). Base station cooperation on the downlink: Large system analysis. IEEE Transactions on Information Theory, 58(4), 2079–2106.

    Article  MathSciNet  MATH  Google Scholar 

  8. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  9. Zhu, H. (2011). Performance comparison between distributed antenna and micro-cellular systems. IEEE Journal on Selected Areas in Communications, 29(6), 1151–1163.

    Article  Google Scholar 

  10. Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). The multi-cell multi-user MIMO uplink with very large antenna arrays and a finite-dimensional channel. IEEE Transactions on Communications, 61(6), 2350–2361.

    Article  Google Scholar 

  11. Li, M., Nam, Y.-H., Ng, B., & Zhang, J. (2012). A non-asymptotic throughput for massive MIMO cellular uplink with pilot reuse. In Proceedings of IEEE Globecom.

  12. Muller, R., Vehkapera, M., & Cottatellucci, L. (2013). Blind pilot decontamination. In Proceedings of WSA.

  13. Huh, H., Caire, G., Papadopoulos, H., & Ramprashad, S. (2012). Achieving massive MIMO spectral efficiency with a not-so-large number of antennas. IEEE Transactions on Wireless Communications, 11(9), 3226–3239.

    Article  Google Scholar 

  14. Yin, H., Gesbert, D., Filippou, M., & Liu, Y. (2013). A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 264–273.

    Article  Google Scholar 

  15. Bjornson, E., Larsson, E. G., & Debbah, M. Massive MIMO for maximal spectral efciency: How many users and pilots should be allocated?. IEEE Transactions on Wireless Communications (Submitted). arXiv:1412.7102.

  16. Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and pre-coding in multi-cell TDD systems. IEEE Transactions on Communications, 10(8), 2640–2651.

    Google Scholar 

  17. Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31(2), 160–171.

    Article  Google Scholar 

  18. Sun, F., Rahman, M. I., & Astely, D. (2010). A study of precoding for LTE TDD using cell specific reference signals. IEEE VTC 2010 Spring, Taipei.

  19. Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  20. Yang, H., & Marzetta, T. (2013). Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 172–179.

    Article  Google Scholar 

  21. Li, J., Wang, D., Zhu, P., & You, X. (2015). Spectral efficiency analysis of large-scale distributed antenna system in a composite correlated Rayleigh fading channel. IET Communications, 9(5), 681–688.

    Article  Google Scholar 

  22. Venkatesan, S., Lozano, A., & Valenzuela, R. (2007). Network MIMO: Overcoming inter-cell interference in indoor wireless systems. In Proceedings of Asilomar conference on signals, systems and computers (ACSSC ’07), Pacific Grove, CA (pp. 83–87).

  23. Zhang, H., & Dai, H. (2004). Cochannel interference mitigation and cooperative processing in downlink multicell multiuser MIMO networks. European Journal on Wireless Communications and Networking, 2, 222–235. (4th Quarter).

    MATH  Google Scholar 

  24. Fosehini, G. J., Karakayali, K., & Valenzuela, R. A. (2006). Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency. IEE Proceedings Communications, 153, 548–555.

    Article  Google Scholar 

  25. Shamai, S., Somekh, O., & Zaidel, B. M. (2004). Multicell communications: An information theoretic perspective. In Joint Workshop on Communications and Coding (JWCC), Florence, Italy.

  26. Medard, M. (2000). The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel. IEEE Transactions on Information Theory, 46(3), 933–946.

    Article  MathSciNet  MATH  Google Scholar 

  27. Hassibi, B., & Hochwald, B. M. (2003). How much training is needed in multiple-antenna wireless links? IEEE Transactions on Information Theory, 49(4), 951–963.

    Article  MATH  Google Scholar 

  28. Boche, H., & Schubert, M. (2002). A general duality theory for uplink and downlink beamforming. In Proceedings of IEEE Vehicular Technology Conference (VTC-Fall) (pp. 87–91).

  29. Ngo, H. Q., Larsson, E., & Marzetta, T. (2013). Energy and spectral efficiency of very large multi-user MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.

    Article  Google Scholar 

  30. Bjornson, E., Matthaiou, M., & Debbah, M. (2015). Massive MIMO with non-ideal arbitrary arrays: Hardware scaling laws and circuit-aware design. IEEE Transactions on Wireless Communications, 14(8), 4353–4368.

    Article  Google Scholar 

  31. Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talha Younas.

Appendix

Appendix

It has been observed from [31] that MMSE estimator for Gaussian channel can be derived as follows:

$$\begin{aligned} {\mathbb {E}}\left\{ {\mathbf {H}}_{alu}\mathrm {vec}\left( {\mathbf {Y}}_{a}\right) ^{H} \right\} \left( {\mathbb {E}}\left\{ \mathrm {vec}\left( {\mathbf {Y}}_{a}\right) \mathrm {vec}\left( {\mathbf {Y}}_{a}\right) ^{H} \right\} \right) ^{-1}\mathrm {vec}\left( {\mathbf {Y}}_{a}\right) \end{aligned}$$
(27)

We use vectorization rule \(\left( {\mathbf {c}}^{T}\otimes {\mathbf {a}}\right) \mathrm {vec}\left( {\mathbf {b}}\right) =\mathrm {vec}\left( {\mathbf {abc}} \right)\) here \(\otimes\) represents Kronecker product, and for our scenario

$$\begin{aligned} {\mathbb {E}}\left\{ {\mathbf {H}}_{alu}\mathrm {vec}\left( {\mathbf {Y}}_{a}\right) ^{H} \right\} = {\mathbb {E}}\left\{ {\mathbf {H}}_{alu}{\mathbf {H}}_{alu}^{H}\left( {\mathbf {q}}_{d_{au}}^{{H}}\otimes {\mathbf {I}}_{N}\right) \right\} =\left( {\mathbf {q}}_{d_{au}}^{{H}}\otimes \rho \frac{d_{a}({\mathbf {z}}_{lu})}{d_{l}({\mathbf {z}}_{lu})}\right) {\mathbf {I}}_{N} \end{aligned}$$
(28)

Because of mutually independent channels we can write as

$$\begin{aligned} {\mathbb {E}}\left\{ \mathrm {vec}\left( {\mathbf {Y}}_{a}\right) \mathrm {vec}\left( {\mathbf {Y}}_{a}\right) ^{H}\right\}&=\sigma ^{2}{\mathbf {I}}_{ND} +\sum \limits _{l\in L}^{}\sum \limits _{u=1}^{K}{\mathbb {E}}\left\{ \mathrm {vec}\left( {\mathbf {H}}_{alu}{\mathbf {q}}_{d_{au}}^{T}\right) \mathrm {vec}\left( {\mathbf {H}}_{alu}{\mathbf {q}}_{d_{au}}^{T}\right) ^{H}\right\} \nonumber \\&= \left( \sum \limits _{l \in L}^{}\sum \limits _{u=1}^{K} \rho \frac{d_{a}({\mathbf {z}}_{lu})}{d_{l}({\mathbf {z}}_{lu})}{\mathbf {q}}_{d_{au}}{\mathbf {q}}_{d_{au}}^{H}+\sigma ^{2}{\mathbf {I}}_{D}\right) \otimes {\mathbf {I}}_{N} \end{aligned}$$
(29)

(7) can be obtained by putting (28) and (29) into (27).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younas, T., Li, J. & Arshad, J. Achieving Bandwidth Efficiency by Improved Zero-Forcing Combining Algorithm in Massive MIMO. Wireless Pers Commun 97, 2581–2596 (2017). https://doi.org/10.1007/s11277-017-4624-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4624-2

Keywords

Navigation