Skip to main content
Log in

A New Proposed the Internet of Things (IoT) Virtualization Framework Based on Sensor-as-a-Service Concept

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) is a new telecommunication paradigm to enable the remote connectivity between dozens of smart objects so that any physical object can interact with each other unmanned-wise. The innovative design for the IoT paradigm has mainly based on “Virtualization technology” to provide the full interaction for the user within the system environment. Meanwhile, it alleviates potential system complications. In this end, this paper seeks to introduce a new vision of an IoT virtualization framework based on Sensor-as-a-Service (SenaaS) to maximize the utilization of sensor functionalities. Moreover, the paper offers an adaptor oriented structure technique by using ITA Sensor Fabric (aka Information Fabric) which relies on Publish/Subscribe mechanism to realize an oriented communication between things. In our proposed framework, ITA Sensor Fabric used as a parallel measure with the semantic approach for mitigating the principle issues in the sensor arena. Furthermore, the proposed framework uses Backtracking Search Optimization Algorithm (BSA) to enhance the SenaaS performance with the time-sensitive services and ensure the required level of the Quality of Service (QoS). The effectiveness of the proposed framework tested by using MATLAB and NS2-based simulations in terms of delay time, packet delivery ratio, throughput, and jitter. Finally, all the experimental results proved that BSA has a significant influence on the time-sensitive services more than their analogues of algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Internet of Things. http://www.rfidjournal.com/articles/view?4986. Accessed 2 June 2015.

  2. Kaur, M. (2015). Advances in embedded service oriented architecture (SOA) for resource-constrained devices. IPASJ International Journal of Electrical Engineering (IIJEE)., 3, 14–18.

    Google Scholar 

  3. Contiki OS. (2015), Retrieved date, from http://www.nsnam.com/search/label/IOT.

  4. Google’s Operating System for IoT. http://www.thenextweb.com/google/2015/05/28/brillo-is-googles-operating-system-for-the-internet-of-things/?utm_medium=referral&awesm=tnw.to_q3PgT&utm_content=Brillo+is+Google%27 s+operating+system+for+the+Internet+of+Things&utm_campaign=share+button&utm_source=facebook.com. Accessed May 2015.

  5. Zhou, H. (2012). The internet of things in the cloud: A middleware perspective. Boca Raton: CRC Press.

    Book  Google Scholar 

  6. Barbaran, J., Diaz, M., & Rubio, B. (2014). A virtual channel-based framework for the integration of wireless sensor networks in the cloud. International Conference on Future Internet of Things and Cloud, 2014, 334–339.

    Google Scholar 

  7. ClouT Project. from http://www.clout-project.eu/clout-concept-the-cloud-of-things/. Accessed 13 May 2015.

  8. Fox, G., Ho, A., Wang, R., Chu, E., & Kwan, I. (2008). A collaborative sensor grids framework, in 2008 international symposium on collaborative technologies and systems (CTS 2008). Irvine, CA: The Hyatt Regency Irvine.

    Google Scholar 

  9. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29, 1645–1660.

    Article  Google Scholar 

  10. Botta, A., de Donato, W., Persico, V., & Pescape, A. (2014). On the integration of cloud computing and internet of things. In International conference on future internet of things and cloud (FiCloud) (pp. 23–30).

  11. CloudIoT. https://www.sites.google.com/site/opensourceiotcloud/installation-guide. Accessed 17 February 2014.

  12. OpenIoT. https://github.com/OpenIotOrg/openiot/wiki/VDKv2—OpenIoT-Release-0.6.1—Virtual-Box-Setup-Guide. Accessed 4 March 2014.

  13. Alam, S., Chowdhury, M. M. R., & Noll, J. (2010). SenaaS: An event-driven sensor virtualization approach for internet of things cloud. In 2010 IEEE international conference on networked embedded systems for enterprise applications (NESEA) (pp 1–6).

  14. Salman, A. A., Ahmad, I., & Omran, M. G. H. (2010). Frequency assignment problem in satellite communications using differential evolution. Computers and Operations Research, 37, 2152–2163.

    Article  MATH  MathSciNet  Google Scholar 

  15. De Falco, I., Della Cioppa, A., & Maisto, D. (2008). Differential evolution as a viable tool for satellite image registration. Applied Soft Computing, 8, 1453–1462.

    Article  Google Scholar 

  16. Wang, S., Wang, S., & Ma, J. J. (2007). An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment. Sensors, 7, 354–370.

    Article  Google Scholar 

  17. Sousa, T., Silva, A., & Neves, A. (2004). Particle swarm based data mining algorithms for classification tasks. Parallel Computing, 30, 767–783.

    Article  Google Scholar 

  18. Publish/subscribe mechanism. (2015). http://docs.oracle.com/cd/B10501_01/appdev.920/a96590/adg15pub.htm. Accessed 30 May 2015.

  19. Sensor Fabric. (2015). Retrieved date, from https://mobilebit.wordpress.com/2013/05/14/mqtt-sensor-fabric/.

  20. Cheng, J. (2008). Testing and debugging persistent computing systems: A new challenge in ubiquitous computing. IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, 2008, 408–414.

    Google Scholar 

  21. Perera, C., Liu, C. H., Jayawardena, S., & Chen, M. (2015). A survey on internet of things from industrial market perspective. IEEE Access, 2, 1660–1679.

    Article  Google Scholar 

  22. Saha, D., & Mukherjee, A. (2003). Pervasive computing: A paradigm for the 21st century. Computer, 36, 25–31.

    Article  Google Scholar 

  23. Behmann, F., & Wu, K. (2015). Collaborative internet of things (C-IoT): For future smart connected life and business. London: Wiley.

    Book  Google Scholar 

  24. Rao, B. P., Saluia, P., Sharma, N., Mittal, A., Sharma, S. V. (2012). Cloud computing for internet of things & sensing based applications. In 2012 sixth international conference on IEEE sensing technology (ICST) (pp. 374–380).

  25. Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). Sensing as a service and big data, conference: International conference on advances in cloud computing (ACC), Bangalore, India. http://arxiv.org/ftp/arxiv/papers/1301/1301.0159.pdf.. Accessed 1 July 2015

  26. Perera, C., Zaslavsky, A., Christen, P., Compton, M., Georgakopoulos, D. (2013). Context-aware sensor search, selection and ranking model for internet of things middleware. In Proceedings of the IEEE 14th international conference on mobile data management (MDM), Milan, Italy (pp. 314–322).

  27. Nike + running shoes and a Nike + iPod Sport Kit or Sensor. http://www.apple.com/ipod/nike/. Accessed 3 July 2015.

  28. Sheng, X., Tang, J., Xiao, X., & Xue, G. (2012). Sensing as a service: Shallenges, solutions and future directions. IEEE Sensors Journal, 13, 3733–3741.

    Article  Google Scholar 

  29. Sensor Fabric. https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=46c1a49f-a9fb-4d82-bbd6-66d67f0fdb2c. Accessed 6 August 2015.

  30. Wright, J., Gibson, C., Bergamaschi, F., Marcus, K., Pressley, R., & Verma, G. et al. (2009) A dynamic infrastructure for interconnecting disparate ISR/ISTAR assets (the ITA Sensor Fabric). In 12th International conference on information fusion, 2009. FUSION ‘09 (pp 1393–1400).

  31. Dilmaghani, R., Geyik, S., Grueneberg, K., Lobo, J., Yousaf Shah, S., Szymanski, B. K., & Zerfos, P. (2012). Policy-aware service composition in sensor networks. In 2012 IEEE ninth international conference on services computing (SCC) (pp. 186–193).

  32. Bourdenasa, T., Bergamaschib, F., Woodc, D., Zerfosc, P., Sloman, M. (2011). Forecasting routes and self-adaptation in multi-hop wireless sensor networks, ground/air multisensor interoperability, intfgration, and networking for persistent ISR II. https://spiral.imperial.ac.uk/bitstream/10044/1/10250/4/spie-dss11.pdf. Accessed 19 August 2015.

  33. Meier, J., & Ramesh, T. (2007). Intelligent sensor fabric computing on a chip: A technology path for intelligent network computing. IEEE Aerospace Conference, 2007, 1–7.

    Google Scholar 

  34. White, D. L., Esswein, S., Hallstrom, J. O., Ali, F., Parab, S., & Eidson, G. et al. (2010). The intelligent river©: Implementation of sensor web enablement technologies across three tiers of system architecture: Fabric, middleware, and application. In 2010 International symposium on collaborative technologies and systems (CTS) (pp. 340–348).

  35. Semantic web, https://www.cambridgesemantics.com/semantic-university/introduction-semantic-web. Accessed 28 August 2015

  36. Hitzler, P., Krotzsch, M., & Rudolph, S. (2009). Foundations of sematic web technology. Boca Raton: CRC Press.

    Google Scholar 

  37. Berners-Lee, T., Hendler, J., Lassila, O. (2001). The semantic web. Scientific American Magazine. Retrieved date, from http://www.scientificamerican.com/article/the-semantic-web/.

  38. Web Ontology Language. http://www.cs.vu.nl/~frank.van.harmelen/postscript/OntoHandbook03OWL.pdf. Accessed 30 August 2015.

  39. Kiljander, J., D’elia, A., Morandi, F., Hyttinen, P., Takalo-Mattila, J., Ylisaukko-Oja, A., et al. (2014). Semantic interoperability architecture for pervasive computing and internet of things. IEEE Access, 2, 856–873.

    Article  Google Scholar 

  40. Choi, H.-S., & Rhee, W.-S. (2012). Distributed semantic sensor web architecture. In TENCON 2012–2012 IEEE region 10 conference (pp. 1–6).

  41. Azad, H. K., Abhishek, K. (2014). Semantic-synaptic web mining: a novel model for improving the web mining. In 2014 Fourth international conference on communication systems and network technologies (pp. 454–457).

  42. Taswell, C. (2008). DOORS to the semantic web and grid with a PORTAL for biomedical computing. IEEE Transactions on Information Technology in Biomedicine, 12, 191–204.

    Article  Google Scholar 

  43. Xiao, X. (2008). Technical, commercial and regulatory challenges of QoS: An internet service model perspective. San Francisco, Calif: Morgan Kaufmann.

    Google Scholar 

  44. Nef, M.-A., Perlepes, L., Karagiorgou, S., Stamoulis, G. I., & Kikiras, P. K. (2012). Enabling QoS in the internet of things. In CTRQ 2012: The fifth international conference on communication Theory, reliability, and quality of service. http://www.techrepublic.com/resource-library/whitepapers/enabling-qos-in-the-internet-of-things/. Accessed 6 November 2015.

  45. Askarzadeh, A., & Santos Coelhodos, L. (2014). A backtracking search algorithm combined with burger’s chaotic map for parameter estimation of PEMFC electrochemical model. 2014 Hydrogen energy publications, LLC (Vol. 39, pp. 11165–11174). London: Elsevier.

    Google Scholar 

  46. Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation, 219, 8121–8144.

    Article  MATH  MathSciNet  Google Scholar 

  47. Ming, Z., & Yan, M. A. (2013). QoS-aware Computational Method for IoT Composite Service. The Journal of China Universities of Posts and Telecommunications, 20, 35–39.

    Article  Google Scholar 

  48. OpenIoT. http://academics.openiot.eu/?q=ontology/ns. Accessed 10 September 2015.

  49. OpenIoT. https://github.com/OpenIotOrg/openiot/wiki/Documentation. Accessed 10 September 2015.

  50. Dan, X., Shi, Y., & Jun-Feng, Y. (2007). A resource description framework for service. In International conference on wireless communications, networking and mobile computing, WiCom 2007 (pp. 3351–3354).

  51. Web Ontology Language (OWL). http://www.w3.org/TR/owl-features/. Accessed 16 September 2015.

  52. BSA Matlab code. http://www.mathworks.com/matlabcentral/fileexchange/44842-backtracking-search-optimization-algorithm. Accessed 1 October 2015.

  53. Kenniche, H., Ravelomananana, V. (2010). Random geometric graphs as model of wireless sensor networks. In 2010 The 2nd international conference on computer and automation engineering (ICCAE), (vol. 4, pp. 103–107).

  54. QoS for Web Services. http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/. Accessed 13 October 2015.

  55. Network simulator 2 ns2. http://www.isi.edu/nsnam/ns/ns-documentation.html. Accessed 30 October 2015.

  56. Network Simulator 2 ns2. http://www.mohittahiliani.blogspot.in/. Accessed 30 October 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainab Hassan Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z.H., Ali, H.A. & Badawy, M.M. A New Proposed the Internet of Things (IoT) Virtualization Framework Based on Sensor-as-a-Service Concept. Wireless Pers Commun 97, 1419–1443 (2017). https://doi.org/10.1007/s11277-017-4580-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4580-x

Keywords

Navigation