Skip to main content
Log in

Low Activity Mechanism for Mobile Sensor/Actuator Networks Based on IEEE 802.15.4

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a new mechanism for the management of mobile nodes fully compatible with IEEE 802.15.4 standard in non-beacon enabled mode. The proposed solution overcomes the problem related to the high association time of mobile nodes in this standard where continuous associations affect the activity time. A static structure supports the mobile nodes, and the procedure allows both data transmission from a mobile node and data reception from the static nodes with minimal activity time and high communication reliability. The approach reduces power consumption and packet loss. Experimental results have been measured on a network composed by a static structure of various hierarchical levels with multiple mobile nodes moving freely, and confirm the suitability of the proposed low activity mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rawat, P., Deep Singh, K., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing, 68(1), 1–48.

    Article  Google Scholar 

  2. Torfs, T., Sterken, T., Brebels, S., et al. (2013). Low power wireless sensor network for building monitoring. IEEE Sensors Journal, 13(3), 909–915.

    Article  Google Scholar 

  3. Shabaneh, A. A. A., Mohd Ali, A., et al. (2014). Review of energy conservation using duty cycling schemes for IEEE 802.15.4 wireless sensor network (WSN). Wireless Personal Communications, 77(1), 589–604.

    Article  Google Scholar 

  4. Kishore Singh, C., Kumar, A., & Ameer, P. M. (2008). Performance evaluation of an IEEE 802.15.4 sensor network with a star topology Wireless Networks. Wireless Networks, 14(4), 543–568.

    Article  Google Scholar 

  5. Li, X., Bleakley, C. J., & Bober, W. (2012). Enhanced beacon-enabled mode for improved IEEE 802.15.4 low data rate performance. Wireless Networks, 18(1), 59–74.

    Article  Google Scholar 

  6. Lopez Riquelme, J. A., Soto, F., Suardíaz, J., Sánchez, P., Iborra, A., & Vera, J. A. (2009). Wireless sensor networks for precision horticulture in Southern Spain. Computer and Electronics in Agriculture, 68(1), 25–35.

    Article  Google Scholar 

  7. Ying, H., Schlösser, M., Schnitzer, A., Schäfer, T., Schläfke, M. E., Leonhardt, S., et al. (2011). Distributed intelligent sensor network for the rehabilitation of Parkinson’s patients. IEEE Transactions on Information Technology in Biomedicine, 15(2), 268–276.

    Article  Google Scholar 

  8. Toscano, E., & Lo Bello, L. (2012). Multichannel superframe scheduling for IEEE 802.15.4 industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 8(2), 337–350.

    Article  Google Scholar 

  9. Zheng, J., & Lee, M. J. (2006). A comprehensive performance study of IEEE 802.15.4, Sensor network operations, Chapter 4 (pp. 218–237). Hoboken: Wiley-IEEE Press.

  10. IEEE Standard for Information technology Part 15.4b. (2006). Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs). IEEE Std P802.15.4/D6.

  11. Zhang, F., Wang, F., Dai, B., & Li, Y. (2008). Performance evaluation of IEEE 802.15.4 Beacon-Enabled Association process. In 22nd International conference on advanced information networking and applicationsWorkshops (pp. 541–546).

  12. Zen, K., Habibi, D., & Ahmad, I. (2008). Improving mobile sensor connectivity time in the IEEE 802.15.4 networks. Telecommunication networks and applications conference, ATNAC 2008. Australasian (pp. 317–320).

  13. Koubaa, A., Cunha, A., & Alves, M. (2007). A time division beacon scheduling mechanism for IEEE 802.15.4/Zigbee cluster-tree wireless sensor networks. In 19th Euromicro conference on real-time systems (pp. 125–135).

  14. Staehle, B. (2009). Optimizing the association procedure for low-power 802.15.4 nonbeacon sensor networks. Networking, 2009, 626–638.

    Google Scholar 

  15. Latré, B., Mil, P. D., Moerman, I., Dhoedt, B., & Demeester, P. (2006). Throughput and delay analysis of unslotted IEEE 802.15.4. Journal of Networks, 1(1), 20–28.

    Article  Google Scholar 

  16. Watanabe, K., Ise, M., Onoye, T., Niwamoto, H., & Keshi, I. (2007). An energy-efficient architecture of wireless home network based on MAC broadcast and transmission power control. In International conference on consumer electronics, ICCE 2007. Digest of technical papers (pp. 1–2).

  17. Heinzelman, W. R., Kulik, J., & Balakrishnan, H. (1999). Adaptive protocols for information dissemination in wireless sensor networks. In Proceedings of the ACM MobiCom’99 (pp. 174–185).

  18. Martalo, M., Buratti, C., Ferrari, G., & Verdone, R. (2013). Clustered IEEE 802.15.4 sensor networks with data aggregation: Energy consumption and probability of error. IEEE Wireless Communications Letters, 2(1), 70–73.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Ministerio de Economía y Competitividad, and FEDER funds under Grants FPA2014-59954-C3-1-P and TEC2013-47286-C3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Galán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubia-Marcos, C., Medina-García, J., Galán, J. et al. Low Activity Mechanism for Mobile Sensor/Actuator Networks Based on IEEE 802.15.4. Wireless Pers Commun 97, 197–212 (2017). https://doi.org/10.1007/s11277-017-4501-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4501-z

Keywords

Navigation