Skip to main content
Log in

Robust Blind Carrier Frequency Offset Estimation Algorithm for OFDM Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a joint covariance power fitting and phase based blind estimation method for carrier frequency offset (CFO) is proposed for orthogonal frequency division multiplexing (OFDM) systems using constant modulus constellations. Based on the assumption that the channel varies slowly within two adjacent OFDM symbols, the influence of the channel on corresponding covariance values and phase of the two OFDM symbols will be the same. Utilizing this, a robust method is formulated based on covariance power fitting criterion and phase information between two nearby OFDM symbols. The mean square error and bit-error-rate performance of the proposed estimation method is compared with that of the prominent conventional estimation schemes under noisy multipath channels with high delay spreads and Doppler spreads. Based on Monte Carlo simulations, it is shown that the proposed method is robust under different channel conditions and provides more accurate CFO estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. van Nee, R., & Prasad, R. (2000). OFDM for wireless multimedia communications. Norwood, MA: Artech House, Inc.

    Google Scholar 

  2. ETSI Normalization Committee et al. (1995). Radio broadcasting systems, digital audio broadcasting (DAB) to mobile, portable and fixed receivers (Vol. 300, No. 401). Norme ETSI, Sophia-Antipolis, France, Doc. ETS, pp. 1995–1997.

  3. Reimers, U. (1998). Digital video broadcasting. IEEE Communications Magazine, 36(6), 104–110.

    Article  Google Scholar 

  4. Li, Y. G., & Stuber, G. L. (2006). Orthogonal frequency division multiplexing for wireless communications. Berlin: Springer.

    Book  Google Scholar 

  5. Fazal, K., & Kaiser, S. (2008). Multi-carrier and spread spectrum systems: From OFDM and MC-CDMA to LT. New York: Wiley.

    Book  Google Scholar 

  6. Yao, Y., & Giannakis, G. B. (2005). Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems. IEEE Transactions on Communications, 53(1), 173–183.

    Article  Google Scholar 

  7. Al-Dweik, A. J. (2004). Robust non data-aided frequency offset estimation technique. In 15th IEEE international symposium on personal, indoor and mobile radio communications, 2004. PIMRC 2004 (Vol. 2), pp. 1365–1369

  8. Zeng, X. N., & Ghrayeb, A. (2008). A blind carrier frequency offset estimation scheme for OFDM systems with constant modulus signaling. IEEE Transactions on Communications, 56(7), 1032–1037.

    Article  Google Scholar 

  9. Al-Dweik, A., Hazmi, A., Younis, S., Sharif, B., & Tsimenidis, C. (2010). Carrier frequency offset estimation for OFDM systems over mobile radio channels. IEEE Transactions on Vehicular Technology, 59(2), 974–979.

    Article  Google Scholar 

  10. Lmai, S., Bourre, A., Laot, C., & Houcke, S. (2014). An efficient blind estimation of carrier frequency offset in OFDM systems. IEEE Transactions on Vehicular Technology, 63(4), 1945–1950.

    Article  Google Scholar 

  11. Oh, J.-H., Kim, J.-G., & Lim, J.-T. (2011). Blind carrier frequency offset estimation for OFDM systems with constant modulus constellations. IEEE Communications Letters, 15(9), 971–973.

    Article  Google Scholar 

  12. Al-Dweik, A., Hazmi, A., Younis, S., Sharif, B., & Tsimenidis, C. (2010). Blind iterative frequency offset estimator for orthogonal frequency division multiplexing systems. IET Communications, 4(16), 2008–2019.

    Article  Google Scholar 

  13. Roman, T., Visuri, S., & Koivunen, V. (2006). Blind frequency synchronization in OFDM via diagonality criterion. IEEE Transactions on Signal Processing, 54(8), 3125–3135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunprakash Jayaprakash.

Appendix

Appendix

The derivation of the cost function given by (13) is presented in this Appendix. Let the first column of the covariance matrix \({\mathbf{R }}_n\left( \overline{\varepsilon }\right) \) be \({\mathbf r} _m\left( l\right) =\left[ r_m(0),r_m(1),\ldots ,r_m(N-1)\right] ^T\). \({\mathbf{R }}_m\left( \overline{\varepsilon }\right) \)is obtained using the matrix \({\mathbf{D }}_m\left( \overline{\varepsilon }\right)\). From (6) and (8), the l-th element of the \({\mathbf{r }}_m\left( l\right)\) vector is obtained as

$$r_m\left( l\right) =\sum ^{N-l-1}_{p=0}{{\hat{d}}_m\left( p+l\right) {{\hat{d}}_m}^*(p)}+\sum ^{N-1}_{p=N-l}{{\hat{d}}_m\left( p+l-N\right) {{\hat{d}}_m}^*\left( p\right) }.$$
(20)

The relationship between \(\widehat{\mathbf{d }}_m\) and \({\mathbf{d }}_m\) is obtained from (2), (3) and (6) as

$${{\widehat{\mathbf{d }}}_m}={e^{\frac{-j2\pi \overline{\varepsilon }m\left( N+N_p\right) }{N}}}{{\varvec{\varTheta }}^{*}_{\overline{\varepsilon }}}e^{\frac{j2\pi \varepsilon m\left( N+N_p\right) }{N}}{{\varvec{\varTheta }}_\varepsilon} {{\mathbf{d }}_m} $$

If \({\mathbf{d }}_m=\left[ d_m(0),d_m(1),\ldots ,d_m(N-1)\right] ^T\), the \(a^{th}\) element of the vector \({\widehat{\mathbf{d }}}_m\) is given by

$${\hat{d}}_m\left( a\right) =e^{\frac{j2\pi \left( \varepsilon -\overline{\varepsilon }\right) m\left( N+N_p\right) }{N}}e^{\frac{j2\pi \left( \varepsilon -\overline{\varepsilon }\right) a}{N}}d_m\left( a\right) .$$
(21)

Using (21) in (20),

$$r_m\left( l\right) =e^{\frac{j2\pi \left( \varepsilon -\overline{\varepsilon }\right) \left( l\right) }{N}}\sum ^{N-l-1}_{p=0}{d_m\left( p+l\right) {d^*}_m\left( p\right) }+e^{\frac{j2\pi \left( \varepsilon -\overline{\varepsilon }\right) \left( l-N\right) }{N}}\sum ^{N-1}_{p=N-l}{d_n\left( p+l-N\right) {d^*}_m\left( p\right) }.$$
(22)

Let \(\sum ^{N-l-1}_{p=0}{d_m\left( p+l\right) {d^*}_m\left( p\right) }\) be \({\lambda }_{m,l}\) and \(\sum ^{N-1}_{p=N-l}{d_m\left( p+l-N\right) {d^*}_m\left( p\right) }\) be \({\mu }_{m,l}\). Then

$$r_m\left( l\right) =e^{\frac{j2\pi \left( \varepsilon -\overline{\varepsilon }\right) l}{N}}{(\lambda }_{m,l}+e^{-j2\pi \left( \varepsilon -\overline{\varepsilon }\right) }{\mu }_{m,l}).$$
(23)

Similarly,

$$r_{m+1}\left( l\right) =e^{\frac{j2\pi \left( \varepsilon -\overline{\varepsilon }\right) l}{N}}{(\lambda }_{m+1,l}+e^{-j2\pi \left( \varepsilon -\overline{\varepsilon }\right) }{\mu }_{m+1,l})$$

and

$$\left( r_{m+1}\left( l\right) -r_m\left( l\right) \right) =e^{\frac{j2\pi \left( \varepsilon -\overline{\varepsilon }\right) l}{N}}\left( \left( {\lambda }_{m+1,l}-{\lambda }_{m,l}\right) +e^{-j2\pi \left( \varepsilon -\overline{\varepsilon }\right) }\left( {\mu }_{m+1,l}-{\mu }_{m,l}\right) \right)$$

Let \(\left( {\lambda }_{m+1,l}-{\lambda }_{m,l}\right)\)=\({\lambda }_l\) and \(\left( {\mu }_{m+1,l}-{\mu }_{m,l}\right)\)=\({\mu }_l\). Then \({\left\| r_{m+1}\left( l\right) -r_m\left( l\right) \right\| }^2\) can be minimized to

$${\left\| r_{m+1}\left( l\right) -r_m\left( l\right) \right\| }^2={\left| \lambda _{l} \right| ^2}+ {\left| {\mu }_l \right| ^2}+2{\text {Re}}\left\{ \lambda _{l}\mu ^*_{l}\right\} \cos {2\pi \left( \varepsilon -\overline{\varepsilon }\right) }-2{\text {Im}}\left\{ \lambda ^*_{l}\mu _{l}\right\} \sin {2\pi \left( \varepsilon -\overline{\varepsilon }\right) }.$$
(24)

Since the channel characteristics remains invariant between two adjacent OFDM symbols, in the absence of CFO and at high SNR, \(r_{m+1}\left( l\right) =r_m\left( l\right)\). Hence, \(\left( \lambda _{m+1,l}+\mu _{m+1,l}\right) =\left( \lambda _{m,l}+\mu _{m,l}\right)\). Therefore, \(\left( \lambda _{m+1,l}-\lambda _{m,l}\right) =-\left( \mu _{m+1,l}-\mu _{m,l}\right)\). i.e. \(\lambda _{l}=-\mu _{l}\). Hence the term \({\text {Im}}\left\{ \lambda ^*_{l}\mu _{l}\right\}\), associated with the sinusoidal term in (24) becomes \(-{\text {Im}}\left\{ \left| \lambda _{l}\right| ^2\right\}\) which is zero. Substituting \(\lambda _{l}=-\mu _{l}\) in (24), \({\left\| r_{m+1}\left( l\right) -r_m\left( l\right) \right\| }^2=2{\left| \lambda _{l} \right| ^2}-2{\left| \lambda _{l} \right| ^2}\cos {2\pi \left( \varepsilon -\overline{\varepsilon }\right) }\). If, \(-2{\left| \lambda _{l} \right| ^2}=A\), \({\left\| r_{m+1}\left( l\right) -r_m\left( l\right) \right\| }^2=A{\cos 2\pi \left( \varepsilon -\overline{\varepsilon }\right) \ }-A\). The constant in the equation is independent of \(\left( \varepsilon -\overline{\varepsilon }\right)\) and the cost function of (11) can be approximated as \(J\left( \overline{\varepsilon }\right) =A\cos \left( 2\pi \left( \varepsilon -\overline{\varepsilon }\right) \right) -A\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaprakash, A., Reddy, G.R. Robust Blind Carrier Frequency Offset Estimation Algorithm for OFDM Systems. Wireless Pers Commun 94, 777–791 (2017). https://doi.org/10.1007/s11277-016-3650-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3650-9

Keywords

Navigation