Skip to main content
Log in

Planar High Gain Dielectric Loaded Exponentially Tapered Slot Antenna for Millimeter Wave Wireless Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new and upcoming application is the use of millimeter wave (MmW) antennas for high date rate point-to-point connections to serve gigabit (Gi-Fi) wireless communications. The concept of substrate integrated waveguide (SIW) and exponentially tapered slot (ETS) antenna are used together design a high gain, efficient planar dielectric loaded antenna for MmW Gi-Fi wireless communications at 60 GHz. The SIW is used to feed the antenna and a dielectric loading is utilized in front of the antenna to increase the gain. The dielectric loaded ETS antenna and compact SIW feed are fabricated on a single substrate, resulting in low cost and easy fabrication. The antenna with elliptical shaped dielectric loaded is fabricated using printed circuit board process. The measured gain of the antenna is 11.4 dB, while the radiation efficiency of 96.84 % is obtained at 60 GHz. The measurement results are compared with simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.

    Article  Google Scholar 

  2. Smulders, P. (2002). Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions. IEEE Communications Magazine, 40(1), 140–147.

    Article  Google Scholar 

  3. Meinel, H. H. (1995). Commercial applications of millimeter waves: History, present status and future trends. IEEE Transactions Microwave Theory Techniques, 43(7), 1639–1653.

    Article  Google Scholar 

  4. Yong, S. K., & Chong, C.-C. (2007). An overview of multi gigabit wireless through millimeter wave technology: Potentials and technical challenges. EURASIP Journal on Wireless Communications and Networking. doi:10.1155/2007/78907.

  5. Xiao, S.-Q., Zhou, M.-T., & Zhang, Y. (2008). Millimeter wave technology for wireless LAN, PAN and MAN. Boca Raton: Auerbach Publications.

    Book  Google Scholar 

  6. Huang, K.-C., & Edwards, D. J. (2008). Millimeter wave antennas for gigabit wireless communications. New York: Wiley.

    Book  Google Scholar 

  7. Deslandes, D., & Wu, K. (2003). Single-substrate integration technique of planar circuits and waveguide filters. IEEE Transactions on Microwave Theory Techniques, 51(2), 593–596.

    Article  Google Scholar 

  8. Ramesh, S., & Rao, T. R. (2013). Dielectric loaded exponentially tapered slot antenna utilizing substrate integrated waveguide technology for millimeter wave applications. Progress in Electromagnetics Research C, 42, 149–164.

    Article  Google Scholar 

  9. Hosseininejad, S. E., Komjani, N., Oraizim, H., & Noghani, M. T. (2012). Optimum design of SIW longitudinal slot array antennas with specified radiation patterns. Applied Computational Electromagnetics Society Journal, 27(4), 320–325.

    Google Scholar 

  10. Rezaiesarlak, R., Salehi, M., & Mehrshahi, E. (2011). Hybrid of moment method and mode matching technique for full-wave analysis of SIW circuits. Applied Computational Electromagnetics Society Journal, 26(8), 688–695.

    Google Scholar 

  11. Bakhtafrooz, A., Borji, A., & Busuioc, D. (2010). Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides. Progress in Electromagnetics Research, 109, 475–491.

    Article  Google Scholar 

  12. Gibson, J. P. (1979). The vivaldi aerial. In Proceedings of 9th European microwave conference-1979 (pp. 101–105).

  13. Gazit, E. (1988). Improved design of the vivaldi antenna. IEE Proceedings, 135(2), 89–92.

    MathSciNet  Google Scholar 

  14. Yngvesson, K. S., Korzeniowski, T., Kim, Y., Kollberg, E., & Johansson, J. F. (1989). The tapered slot antenna: A new integrated element for millimeter wave applications. IEEE Transactions on Microwave Theory Techniques, 37(2), 365–374.

    Article  Google Scholar 

  15. Hood, A. Z., Karacolak, T., & Topsakal, E. (2008). A small antipodal Vivaldi antenna for ultra wide-band applications. IEEE Antennas Wireless Propagation Letters, 7, 656–660.

    Article  Google Scholar 

  16. Wu, K., Deslandes, D., & Cassivi, Y., (2003). The substrate integrated circuits: A new concept for high-frequency electronics and optoelectronics. In Proceedings of 6th international conference on telecommunication modern satellite, cable broadcasting service-2003 (pp. 1–3).

  17. Costanzo, S., Casula, G. A., Borgia, A., Montisci, G., Venneri, I., et al. (2010). Synthesis of slot arrays on integrated waveguides. IEEE Antennas and Wireless Propagation Letters, 9, 962–965.

    Google Scholar 

  18. Xu, F., & Wu, K. (2005). Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Transactions on Microwave Theory Techniques, 53(1), 66–72.

    Article  Google Scholar 

  19. Yan, L., Hong, W., Wu, K., & Cui, T. J. (2005). Investigations of the propagation characteristics of the substrate integrated waveguide based on the method of lines. IEE proceedings: Microwaves, antennas and propagation, 152(1), 35–42.

    Google Scholar 

  20. Deslandes, D., & Wu, K. (2001). Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave Wireless Components Letters, 11(2), 68–70.

    Article  Google Scholar 

  21. Langley, D., Hall, P., & Newham, P. (1996). Balanced antipodal vivaldi antenna for wide bandwidth phased arrays. IEE Proceedings of Microwave Antennas Propagation, 143(2), 97–102.

    Article  Google Scholar 

  22. Yang, Y., Wang, Y., & Fathy, A. E. (2008). Design of compact Vivaldi antenna arrays for UWB see through wall applications. Progress in Electromagnetics Research, 82, 401–418.

    Article  Google Scholar 

  23. Hood, A. Z., Karacolak, T., & Topsakal, E. (2008). A small antipodal vivaldi antenna for ultrawide-band applications. IEEE Antennas and Wireless Propagation Letters, 7, 556–560.

    Article  Google Scholar 

  24. Shrivastava, P., Chandra, D., Tiwari, N., & Rao, T. R. (2013). Investigations on corrugation issues in SIW based antipodal linear tapered slot antenna for wireless networks at 60 GHz. Applied Computational Electromagnetics Society Journal, 28(10), 960–967.

    Google Scholar 

  25. Kedar, A., & Beenamole, K. S. (2011). Wide beam tapered slot antenna for wide angle scanning phased array antenna. Progress in Electromagnetics Research B, 27, 235–251.

    Article  Google Scholar 

  26. Hamzah, Norhayati, & Othman, Kama Azura. (2011). Designing Vivaldi antenna with various sizes using CST software. Proceedings of the World Congress on Engineering-WCE, 2011(2), 1–5.

    Google Scholar 

  27. Ramesh, S., & Rao, T. R. (2013). Dielectric loaded exponentially tapered slot antenna for wireless communications at 60 GHz. Progress in Electromagnetics Research C, 38, 43–54.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are very much grateful to the DRDO, Government of India for providing financial patronage in executing this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, S., Rao, T.R. Planar High Gain Dielectric Loaded Exponentially Tapered Slot Antenna for Millimeter Wave Wireless Communications. Wireless Pers Commun 84, 3179–3192 (2015). https://doi.org/10.1007/s11277-015-2795-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2795-2

Keywords

Navigation