Skip to main content
Log in

Wideband Power Spectrum Sensing for Cognitive Radios Based on Sub-Nyquist Sampling

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In a cognitive radio system, efficient wideband spectrum estimation is a basic component of dynamic spectrum access. The systems high sampling rate is the main challenge in the frontend. In this paper, wideband power spectrum sensing is studied based on sub-Nyquist sampling instead of signal recovery. Compared to other spectrum sensing methods based on sub-Nyquist sampling, the proposed scheme is suitable for both sparse and nonsparse signals. A low complexity, adaptive resolution frequency averaging scheme is proposed to exploit the cross-power spectrum between the outputs of different channels. Spectrum reconstruction presents only a simple least square without any sparse constraint. The normalized mean square error is computed to demonstrate estimation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, J. G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. Axell, E., Leus, G., Larsson, E., & Poor, H. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.

    Article  Google Scholar 

  3. Gavrilovska, L., & Atanasovski, V. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59(3), 447–469.

    Article  Google Scholar 

  4. Candes, E., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  5. Nguyen, V. T., Villain, F., & Le Guillou, Y. (2011). Cognitive radio systems: Overview and challenges. In 2011 3rd International conference on awareness science and technology (iCAST) (pp. 497–502).

  6. Tian, Z., & Giannakis, G. (2007). Compressed sensing for wideband cognitive radios. In IEEE international conference on acoustics, speech and signal processing, 2007. ICASSP 2007 (Vol. 4, pp. 1357–1360).

  7. Wang, Y., Tian, Z., & Feng, C. (2010). A two-step compressed spectrum sensing scheme for wideband cognitive radios. In 2010 IEEE global telecommunications conference (Globecom 2010) (pp. 1–5).

  8. Sun, H., Chiu, W. Y., & Nallanathan, A. (2012). Adaptive compressive spectrum sensing for wideband cognitive radios. IEEE Communications Letters, 16(11), 1812–1815.

    Article  MathSciNet  Google Scholar 

  9. Sun, H., Chiu, W. Y., Jiang, J., Nallanathan, A., & Poor, H. (2012). Wideband spectrum sensing with sub-Nyquist sampling in cognitive radios. IEEE Transactions on Signal Processing, 60(11), 6068–6073.

    Article  MathSciNet  Google Scholar 

  10. Jiao, L., Chen, J., Wu, J., Wang, X., & Zhang, S. (2012). Efficient collaborative spectrum sensing with low sample rate. Wireless Personal Communications, 67(4), 923–936.

    Article  Google Scholar 

  11. Wang, Y., Tian, Z., & Feng, C. (2012). Sparsity order estimation and its application in compressive spectrum sensing for cognitive radios. IEEE Transactions on Wireless Communications, 11(6), 2116–2125.

    Article  Google Scholar 

  12. Mehanna, O., & Sidiropoulos, N. (2013). Frugal sensing: Wideband power spectrum sensing from few bits. IEEE Transactions on Signal Processing, 61(10), 2693–2703.

    Article  MathSciNet  Google Scholar 

  13. Yen, C. P., Tsai, Y., & Wang, X. (2013). Wideband spectrum sensing based on sub-Nyquist sampling. IEEE Transactions on Signal Processing, 61(12), 3028–3040.

    Article  Google Scholar 

  14. Ariananda, D., & Leus, G. (2012). Compressive wideband power spectrum estimation. IEEE Transactions on Signal Processing, 60(9), 4775–4789.

    Article  MathSciNet  Google Scholar 

  15. Leus, G., & Ariananda, D. (2011). Power spectrum blind sampling. IEEE Signal Processing Letters, 18(8), 443–446.

    Article  Google Scholar 

  16. Lexa, M. A., Davies, M., Thompson, J., & Nikolic, J. (2011). Compressive power spectral density estimation. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3884–3887).

  17. Kirolos, S., Ragheb, T., Laska, J., Duarte, M., Massoud, Y., & Baraniuk, R. (2006). Practical issues in implementing analog-to-information converters. In The 6th international workshop on system-on-chip for real-time applications (pp. 141–146).

  18. Lexa, M. A., Davies, M., & Thompson, J. (2012). Reconciling compressive sampling systems for spectrally sparse continuous-time signals. IEEE Transactions on Signal Processing, 60(1), 155–171.

    Article  MathSciNet  Google Scholar 

  19. Mishali, M., & Eldar, Y. (2010). From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals. IEEE Journal of Selected Topics in Signal Processing, 4(2), 375–391.

    Article  Google Scholar 

  20. Stoica, P., & Moses, R. (2005). Spectral analysis of signals. Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  21. Batra, A., Lingam, S., Balakrishnan, J. (2006). Multi-band ofdm: A cognitive radio for uwb. In Proceedings of 2006 IEEE international symposium on circuits and systems, 2006. ISCAS 2006 (pp. 4094–4097).

  22. Mahmoud, H., Yucek, T., & Arslan, H. (2009). OFDM for cognitive radio: Merits and challenges. IEEE Wireless Communications, 16(2), 6–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lebing Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Xiao, S. & Yuan, X. Wideband Power Spectrum Sensing for Cognitive Radios Based on Sub-Nyquist Sampling. Wireless Pers Commun 84, 919–933 (2015). https://doi.org/10.1007/s11277-015-2668-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2668-8

Keywords

Navigation