Skip to main content

Advertisement

Log in

Optimized Battery Models Observations for Static, Distance Vector and On-Demand Based Routing Protocols Over 802.11 Enabled Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We analyze a wireless sensor network system to address the impact of different battery models on five routing protocols. We present an analytical model to understand the key performance metrics like average jitter, first and last packet received, total bytes received, average end to end delay, throughput and energy consumption. We have proposed the various parameters of our model for static, distance vector and on demand based routing protocols along with linear and service life estimator battery model. The validation of proposed parameters through simulation and derive substantial investigations in wireless sensor network system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., & Rubenstein, D. (2002). Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet. In Proceedings of the 10th international conference on architectural support for programming languages and operating systems (San Jose, California, October 05 - 09, 2002). ASPLOS-X (pp. 96–107). ACM Press, New York, NY. doi:10.1145/605397.605408.

  2. Beaufour, A., Leopold, M., & Bonnet, P. (2002). Smart-tag based data dissemination. In Proceedings In WSNA ’02: Proceedings of the 1st ACM international workshop on wireless sensor networks and applications, pp. 68–77, doi:10.1145/570738.570749.

  3. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., & Anderson, J. (2002). Wireless sensor networks for habitat monitoring. Proceeding of 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA’02). Atlanta, GA, pp. 88–97.

  4. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communication Magzine, 40(8), 102–114. doi:10.1109/MCOM.2002.1024422.

    Article  Google Scholar 

  5. Chong, C.-Y., & Kumar, S. P. (2003). Sensor networks: Evolution, opportunities and challenges. Proceeding of the IEEE, 91(8), 1247–1256.

    Article  Google Scholar 

  6. MIT Technology Review. (2003). 10 emerging technologies that willchange the world.http://www2.technologyreview.com/featured-strory/401775/10-emerging-technologies-that-will-change-the/2/.

  7. Jain, S., Shah, R. C., Brunette, W., Borriello, G., & Roy, S. (2006). Exploiting mobility for energy efficient data collection in wireless sensor networks. Mobile Networks and Applications 11, (pp. 327–339). Published online: 28 April 2006.

  8. Xiao, J.-J., Cui, S., Luo, Z.-Q., & Goldsmith, A. J. (2006). Power scheduling of universal decentralized estimation in sensor networks. IEEE Transactions on Signal Processing, 54(2), 413–422.

    Article  MathSciNet  Google Scholar 

  9. Cui, S., Xiao, J.-J., Goldsmith, A. J., Luo, Z.-Q., & Poor, H. V. (2007). Estimation diversity and energy efficiency in distributed sensing. IEEE Transaction on Signal Processing, 55(9), 4683–4695.

    Article  MathSciNet  Google Scholar 

  10. Wu, J. Y., Huang, Q. Z., & Lee, T. S. (2008). Minimal energy decentralized estimation via exploiting the statistical knowledge of sensor noise variance. IEEE Transaction on Signal Processing, 56(5), 2171–2176.

    Article  MathSciNet  Google Scholar 

  11. Li, J., & AlRegib, G. (2009). Distributed estimation in energy-constrained wireless sensor networks. IEEE Tranactions on Signal Processing, 57(10), 3746–3758.

    Article  MathSciNet  Google Scholar 

  12. Wang, C.-H., & Dey, S. (2011). Distortion outage minimization in Nakagami fading using limited feedback. EURASIP Journal on Advances in Signal Processing, 92, 1-16. doi:10.1186/1687-6180-2011-92.

  13. Wang, C. -H., & Dey, S. (2009). Distortion outage minimization in Rayleigh fading using limited feedback. Presented at the IEEE Global Communication Conference. (GLOBECOM’09), Honolulu, HI.

  14. Chaudhary, M. H., & Vandendorpe, L. (2013). Performance of power-constrained estimation in hierarchical wireless sensor networks. IEEE Transactions On Signal Processing, 61(3), 724–739.

  15. Stojmenovic, I. (2002). Position based routing in ad hoc networks. IEEE Communications Magazine, 40(7), 128–134.

    Article  Google Scholar 

  16. Stojmenovic, I., Nayak, A., Kuruvila, J., Ovalle-Martinez, F., & Villanueva-Pena, E. (2005). Physical layer impact on the design and performance of routing and broadcasting protocols in ad hoc and sensor networks. Computer Communications, 28(10), 1138–1151.

    Article  Google Scholar 

  17. Stojmenovic, I., Nayak, A., & Kuruvila, J. (2005). Design guidelines for routing protocols in ad hoc and sensor networks with a realistic physical layer. IEEE comm Communications Magazine (Ad Hoc and Sensor Networks Series), 43(3), 101–106.

    Google Scholar 

  18. Stojmenovic, I. (2006). Localized network layer protocols in sensor networks based on optimizing cost over progress ratio. IEEE Network, 20(1), 21–27.

    Article  Google Scholar 

  19. Stojmenović, I., Liu, D., & Jia, X. (2008). A scalable quorum based location service in ad hoc and sensor networks. International Journal of Communication Networks and Distributed Systems, 1(1), 71–94.

    Article  Google Scholar 

  20. Eslaminejad, M., Shukor, A. B. D. R., & Sookhak, M. (2013). Classification of energy efficient routing protocols for wireless sensor network. Adhoc & Sensor Wireless Network, Journal, pp. 103–129, Volume 17,1–2, Old City Publishing, Inc. USA.

  21. Rakhmatov, D., Vrudhula, S., & Wallach, D. (2003). A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Transactions on VLSI Systems. pp. 1019–1030.

  22. Pedram, M., & Wu, Q. (2002). Design considerations for battery-powered electronics. IEEE Transaction on VLSI Systems, 10(5), 601–607.

    Article  Google Scholar 

  23. http://www.cs.ucsb.edu/~ebelding/courses/284/qualnet/QualNet-4.5.1-Wireless-ModelLibrary.pdf.

  24. Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16, 87–90.

    MATH  MathSciNet  Google Scholar 

  25. Ford, L. R, Jr, & Fulkerson, D. R. (1962). Flows in networks. New Jersey, USA: Princeton University Press, Princeton.

  26. Moore, E. F. (1959). The shortest path through a maze. Proceeding of International Symposium Switching Theory 1957, Part II (pp. 285–292). Cambridge, Mass.: Harvard University Press.

  27. Cheng, C., Riley, R., Kumar, S. P., & Garcia-Luna-Aceves, J. J.(1989). A loop free extended Bellman-Ford routing protocol without bouncing effect, ACM SIGCOMM Computer Communication Review, 19(4), 224–237.

  28. Baharloo, M., Hajisheykhi, R., Arjomand, M., & Jahangir, A. H. (2009). An analytical performance evaluation for WSNs using loop-free Bellman Ford protocol. International Conference on Advanced Information Networking and Applications.

  29. Hedrick, C. L. (1988). Routing Information Protocol, IETF RFC 1058. http://www.rfc-editor.org/rfc/rfc1058.txt.

  30. Malkin, G. (1997). Ripng for ipv6, RFC 2080, January 1997. https://www.ietf.org/rfc/rfc2080.txt

  31. Malkin, G. (1998). RIP Version 2, IETF RFC 2453. http://www.rfc-editor.org/rfc/rfc2453.txt.

  32. Al-Mekhlafi, Z. G., & Hassan, R. (2011). Evaluation study on routing information protocol and dynamic source routing in ad-hoc network. In the IEEE \(7^{{\rm th}}\) international Conference on IT in Asia (CITA).

  33. Johnson, D. B. (1994). Routing in ad hoc networks of mobile hosts. In Proceeding of the IEEE workshop on mobile computing systems and applications, (pp. 158–163). IEEE Computer Society.

  34. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless network. In T. Imielinski & H. Korth (Eds.), Mobile Computing (5th ed., pp. 153–181). Kluwer: Kluwer Academic Publisher. Dordrecht, The Netherlands.

  35. Broch, J., Maltz, D. A., & Johnson, D. B. (1999). Supporting hierarchy and heterogeneous interfaces in multi-hop wireless ad hoc networks. In Proceedings of the international symposium on parallel architectures, algorithms and networks (ISPAN’99), Workshop on mobile computing.

  36. Verma, V. K., Singh, S., & Pathak, N. P. (2011). Effect of temperature on performance of dynamic source routing protocol in wireless sensor network. In Proceeding of national conference on communications & networking (NCCN-11).

  37. Perkins, C. E., & Royer, E. M. (1999). Ad hoc on-demand distance vector routing. Proceedings 2nd IEEE workshop on mobile computering system and applications (pp. 90–100). New Orleans, LA.

  38. Perkins, C. E., Belding-Royer, E. M., & Das, S. R. (2003). Ad hoc on-demand distance vector (AODV) routing. IETF RFC 3561.

  39. Sklyarenko, G. (2006). AODV routing Protocol. The seminar in Technische Informatik, Freie University, Berlin, Germany.

  40. Che-aron, Z., Al- Khateeb, W., & Anwar, F. (2010). An enhancement of AODV routing protocol for more robust wireless sensor network. International Journal of Computer and Network Security (IJCNS), 2(7), 18–26.

  41. Sundararajan, T. V. P., & Dr. Shanmugam, A. (2010). Selfish avoidance routing protocol for mobile ad-hoc network. International Journal of wireless and Mobile Networks (IJWMN), 2(2), 80–92.

  42. Verma, V. K., Singh, S., & Pathak, N. P. (2012). Terrain investigations of AODV routing protocol over temporal constraints in wireless sensor network. In proceeding of 11th WSEAS international conference on electronics, hardware, wireless and optical communication (EHAC ’ 12), recent researches in communications, electronics, signal processing and automatic control, (pp. 74–77), ISBN: 978-1-61804-069-5, Cambridge, United Kingdom (UK), 22–24 Feb 2012. www.wseas.org.

  43. Chou, S. -T., Vhern, H. -T., Shiao, C.-M., & Lee, Z. J. (2013). Cross-layer design of AODV protocol for multihop flow in ad-hoc network. Adhoc & Sensor Wireless Networks Journal, 17, 233–252, Number 3–4, Old City Publishing, Inc. USA.

  44. Chakeres, I., & Perkins, C. (2007). Dynamic MANET on-demand (DYMO) routing. Internet draft (Work in Progress), draft-ietfmanet-dymo-10.txt.

  45. Chakeres, I., & Perkins, C. (2010). Dynamic MANET on-demand (DYMO) routing. IETF Internet Draft, V. 19.

  46. LAN MAN Standards Committee of the IEEE Computer Society, Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Standard 802.11-1997, IEEE Standards Dept., (1994). http://www.di.unisa.it/~vitsca/RC-0809I/IEEE-802-11.pdf.

  47. Scalable Network Technologies. (2003). Qualnet simulator software package.

  48. Li, L., & Halpern, J. Y. (2001). Minimum-energy, mobile wireless networks revisited. In IEEE international conference on communications, ICC 2001 1, 278–283.

  49. Sánchez, J. A., & Ruiz, P. M. (2006). Improving delivery ratio and power efficiency in unicast geographic routing with a realistic physical layer for wireless sensor networks. In Proceedings 9th euromicro conference on digital system design (DSD’06) (pp. 591–597), 2006.

  50. Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. Vehicular Technology Magazine IEEE, 2(2), 12–22.

    Article  Google Scholar 

  51. Dorigo, M., Gambardella, L., Birattari, M., Martinoli, A., Poli, R., & Stützle, T. (2006). Ant colony optimization and swarm intelligence in LNCS: Vol. 4150. 5th international workshop, ANTS 2006. Brussels: Springer.

  52. Mármol, F. G., & Pérez, G. M. (2009). Security threats scenarios in trust and reputation models for distributed systems. Computers & Security, 28(7), 545–556.

    Article  Google Scholar 

  53. Mármol, F. G., & Pérez, G. M. (2012). TRIP, a trust and reputation infrastructure-based proposal for vehicular ad-hoc networks. Journal of Network and Computer Applications, 35(3), 934–941.

    Article  Google Scholar 

  54. Lee, S.-J., Belding-Royer, E. M., & Perkins, C. E. (2003). Scalability study of the ad hoc on-demand distance vector routing protocol. International Journal of Network Management, 13(2), 97–114.

    Article  Google Scholar 

  55. Bai, R., & Singhal, M. (2006). DOA: DSR over AODV routing for mobile ad hoc networks. IEEE Transactions on Mobile Computing, 5(10), 1406–1416.

    Google Scholar 

  56. Baharloo, M., Hajisheykhi, R., Arjomand, M., & Jahangir, A. H. (2009). An analytical performance evaluation for WSNs using loop-free Bellman Ford protocol. International conference on advanced information networking and applications.

  57. Raghuvanshi, A. S., & Tiwari, S. (2010). DYMO as routing protocol for IEEE-802.15.4 enabled wireless sensor networks. IEEE sixth international conference on wireless communication and sensor networks (WCSN).

  58. Al-Mekhlafi, Z. G., & Hassan, R. (2011). Evaluation study on routing information protocol and dynamic source routing in ad-hoc network. 7\(^{\rm th}\) international conference on IT in Asia (CITA).

  59. Manju, R. T., & Jyoti, M. K. (2013). Performance evaluation of Bellman-Ford, AODV, DSR and DYMO Protocols using QualNet in 1,000 m \(\times \) 1,000 m Terrain Area. International journal of soft computing and engineering (IJSCE) ISSN: 2231–2307, 2(6).

Download references

Acknowledgments

We would like to thank Department of Electronics and Communication Engineering, SLIET, Longowal, India for providing us Wireless SignalPro software. Any opinions, view, findings and conclusions or recommendations expressed in this research work are those of the authors only and do not reflect any other agencies viewpoints. Last but not least, we would like to thank the reviewers for their valuable suggestions which bring the manuscript in present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V.K., Singh, S. & Pathak, N.P. Optimized Battery Models Observations for Static, Distance Vector and On-Demand Based Routing Protocols Over 802.11 Enabled Wireless Sensor Networks. Wireless Pers Commun 81, 503–517 (2015). https://doi.org/10.1007/s11277-014-2141-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2141-0

Keywords

Navigation