Skip to main content

Advertisement

Log in

Hierarchical Architecture for Multi-Technology Wireless Sensor Networks for Critical Infrastructure Protection

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A hierarchical architecture for wireless sensor network (WSN) consisting of heterogeneous devices is introduced in this paper. Proposed architecture is well suited for surveillance of critical infrastructures and it is designed to be scalable for various different scenarios. Low power consumption will be achieved by utilizing a wake-up radio concept which enables to keep the most power consuming devices at the sleep mode as long as possible. A WSN OpenAPI gateway (WOAG) component of the architecture supports high scalability by enabling data collection and sharing from networks deployed using multiple different technologies. WOAG facilitates WSNs information availability to local and remote end-users. Analytical energy efficiency optimization model for the architecture is developed. Results show energy efficiency gains that can be achieved with the proposed wake-up concept based intelligent hierarchical architecture design. For low event frequency case the energy efficiency is found to be one order of magnitude better than for duty cycle (1 %) radio based network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ams AG: ams AS3933 3D LF wake-up receiver webpage (2014). http://www.ams.com/eng/Wake-up-receiver/AS3933.

  2. Ansari, J., Pankin, D., & Mähönen, P. (2009). Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. Springer International Journal of Wireless Information Networks, 16(3), 118–130.

    Google Scholar 

  3. Bluetooth SIG: Bluetooth special interest group webpage (2014). http://www.bluetooth.org.

  4. Buratti, C., & Verdone, R. (2008). A hybrid hierarchical architecture: From a wireless sensor network to the fixed infrastructure. In: Wireless Conference, EW 2008.

  5. Buttyan, L., Gessner, D., & Hessler, A. (2010). Langendoerfer: Application of wireless sensor networks in critical infrastructure protection: challenges and design options. IEEE Wireless Communications, 17(5), 44–49. doi:10.1109/MWC.2010.5601957.

    Article  Google Scholar 

  6. Crossbow: TelosB datasheet (2014). http://www.willow.co.uk/TelosB_Datasheet.pdf.

  7. D-Link: D-Link wepbage (2014). http://www.dlink.com/.

  8. DASH7 Alliance: ISO 18000–7 Standard (DASH7) (2014). http://www.dash7.org.

  9. Demirkol, I., Ersoy, C., & Onur, E. (2009). Wake-up receivers for wireless sensor networks: Benefits and challenges. IEEE Wireless Communications, 16(4), 88–96. doi:10.1109/MWC.2009.5281260.

    Article  Google Scholar 

  10. Eugster, P., Felber, P., Guerraoui, R., & Kermarrec, A. (2003). The many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2), 114–131. doi:10.1145/857076.857078.

    Article  Google Scholar 

  11. FriendlyARM: FriendlyARM Mini6410 specification (2014). http://www.friendlyarm.net/products/mini6410.

  12. HART Communication Foundation: HART Communication Foundation webpage (2014). http://www.hartcomm.org.

  13. Honkola, J., Laine, H., Brown, R., & Tyrkko, O. (2010). Smart-M3 information sharing platform. In IEEE Symposium on Computers and Communications (ISCC) (pp. 1041–1046). doi:10.1109/ISCC.2010.5546642.

  14. IEEE Std. 1902.1: IEEE Standard for Long Wavelength Wireless Network Protocol (2009). Standard. The Institute of Electrical and Electronics Engineers, Inc.

  15. IEEE Std. 802.15.4: Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). Standard, The Institute of Electrical and Electronics Engineers, Inc. (2006). Revision of IEEE Std 802.15.4-2003.

  16. IEEE Std. 802.15.6: IEEE Standard for Local and metropolitan area networks—Part 15.6: Wireless Body Area Networks. Standard, The Institute of Electrical and Electronics Engineers, Inc. (2012).

  17. Khan, Z., Catalot, D., & Thiriet, J. (2009). Hierarchical wireless network architecture for distributed applications. In Wireless and Mobile Communications, ICWMC ’09 (pp. 70–75).

  18. Kulkarni, P., Ganesan, D., Shenoy, P., & Lu, Q. (2005). SensEye: A multitier camera sensor network. In ACM International Conference on Multimedia, MM ’05.

  19. Kumar, D., Aserib, C., & Patelc, R. (2009). Energy efficient heterogeneous clustered scheme for wireless sensor networks. Elsevier Computer Communications, 32(4), 662–667. doi:10.1016/j.comcom.2008.11.025.

    Article  Google Scholar 

  20. Kuorilehto, M., Kohvakka, M., Suhonen, J., Hämäläinen, P., Hännikäinen, M., & Hämäläinen, T. (2007). Ultra-low energy wireless sensor networks in practice: Theory, realization and deployment. Chichester: Wiley.

    Book  Google Scholar 

  21. LogMeln Inc. (2014). Xively by logmeln webpage. https://xively.com/.

  22. Lopes, C. E. R., Linhares, F. D., Santos, M. M., & Ruiz, L. B. (2007). A multi-tier, multimodal wireless sensor network for environmental monitoring. Springer Link Lecture Notes in Computer Science, 4611, 589–598.

    Article  Google Scholar 

  23. Raghunathan, V., Ganeriwal, S., & Srivastava, M. (2006). Emerging techniques for long lived wireless sensor networks. IEEE Wireless Communications, 44(4), 108–114. doi:10.1109/MCOM.2006.1632657.

    Google Scholar 

  24. Reed, C., Botts, M., Davidson, J., & Percivall, G. (2007). OGC sensor web enablement: Overview and high level architecture. In IEEE Autotest conference (pp. 372–380). doi:10.1109/AUTEST.2007.4374243.

  25. Sample, A., Yeager, D., Powledge, P., & Smith, J. (2007). Design of a passively-powered, programmable sensing platform for UHF RFID systems. In IEEE International Conference on RFID.

  26. Shelby, Z., & Bormann, C. (2009). 6LoWPAN: The wireless embedded internet. Chichester: Wiley.

    Book  Google Scholar 

  27. Slimane, J. B., Song, Y. Q., Kouba, A., & Frikha, M. (2009). A three-tiered architecture for large-scale wireless hospital sensor networks. In International workshop on mobilizing health information to support healthcare-related knowledge work, MobiHealthInf 2009.

  28. Song, E., & Lee, K. (2008). Understanding IEEE 1451-networked smart transducer interface standard—what is a smart transducer? IEEE Instrumentation Measurement Magazine, 11(2), 11–17. doi:10.1109/MIM.2008.4483728.

    Article  Google Scholar 

  29. Stefanov, A., & Stojanovic, M. (2010). Hierarchical underwater acoustic sensor networks. In ACM international workshop on underwater, Networks, WUWNet10 (2010).

  30. Suhonen, J., Kivelä, O., Laukkarinen, T., Hännikäinen, M. (2012). Unified service access for wireless sensor networks. International workshop on software engineering for sensor network applications (SESENA), 2012, (pp. 49–55). doi:10.1109/SESENA.2012.62257354.

  31. Tampere University of Technology: WSN Open API webpage (2014). http://www.tkt.cs.tut.fi/research/gwg/.

  32. The ISA100 Committee: The ISA100 Standards, Wireless Systems for Automation (2014). http://www.isa.org/isa100.

  33. Wu, M., & Collier, M. (2011). Extending the lifetime of heterogeneous sensor networks using a two-level topology. In IEEE international conference on computer and information technology (pp. 499–504).

  34. Yang, J., Gao, Y., & Zhang, Z. (2011). Cluster-based routing protocols in wireless sensor networks: A survey. In International conference on computer science and network technology, ICCSNT ’11, vol. 3 (pp. 1659–1663).

  35. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Elsevier Computer Networks, 52(12), 2292–2330. doi:10.1016/j.comnet.2008.04.002.

    Article  Google Scholar 

  36. Z-Wave Alliance: Z-Wave alliance webpage (2014). http://www.z-wavealliance.org.

  37. Zatout, Y., Campo, E., & Llibre, J. F. (2009). WSN-HM: Energy-efficient wireless sensor network for home monitoring. In International conference on intelligent sensors, sensor networks and information processing (ISSNIP) (pp. 367–372).

  38. Zhang, M., Song, J., & Zhang, Y. (2005). Three-tiered sensor networks architecture for traffic information monitoring and processing. Intelligent Robots and Systems, IROS, 2005, 2291–2296.

    Google Scholar 

  39. ZigBee Alliance: ZigBee Alliance webpage (2014). http://www.zigbee.org.

  40. Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. (2010). From today’s INTRAnet of things to a future INTERnet of things: A wireless- and mobility-related view. IEEE Wireless Communications, 17(6), 44–51. doi:10.1109/MWC.2010.5675777.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the Finnish Funding Agency for Innovation (Tekes) through WAS, CONCARI and PROTECTOR projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heikki Karvonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karvonen, H., Suhonen, J., Petäjäjärvi, J. et al. Hierarchical Architecture for Multi-Technology Wireless Sensor Networks for Critical Infrastructure Protection. Wireless Pers Commun 76, 209–229 (2014). https://doi.org/10.1007/s11277-014-1686-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1686-2

Keywords

Navigation