Skip to main content
Log in

Reduction of Mutual Coupling in Metamaterial Based Microstrip Antennas: The Progress in Last Decade

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Compact multiple antennas are attracting much attention because of the rapid growth of the wireless multiple input multiple output communication systems. An important challenge in multiple antenna system is mutual coupling effects. A brief review of reduction of mutual coupling in antenna arrays by using metamaterial is presented. Different types of metamaterial structures like electromagnetic band gap substrate, defected ground structure, split ring resonator, complimentary split ring resonator, soft surfaces/high impedance surface and mender line structure are described along with their operational principles. Whereas the problems associated along with the comparison and comments on their scope of applications are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Balanis, C. A. (2012). Antenna theory analysis and design (3rd ed.). New York: Wiley Interscience.

    Google Scholar 

  2. Gupta, I. J., & Ksienski, A. A. (1983). Effect of mutual coupling on the performance of adaptive arrays. IEEE Transactions on Antennas and Propagation, 31(5), 785–791.

    Article  Google Scholar 

  3. Durrani, S., & Bialkowski, M. E. (2004). Effect of mutual coupling on the interference rejection capabilities of linear and circular arrays in CDMA. IEEE Transactions on Antennas and Propagation, 52(4), 1130–1134.

    Article  Google Scholar 

  4. Hui, H. T. (2007). Decoupling methods for the mutual coupling effect in antenna arrays: A review. Recent Patents on Engineering, 1, 187–193.

    Article  MathSciNet  Google Scholar 

  5. Segovia-Vargas, D., Martin-Cuerdo, R., & Sierra-Perez, M. (2002). Mutual coupling effects correction in microstrip arrays for direction-of-arrival (DOA) estimation. IEE Proceedings on Microwave, Antennas and Propagation, 149(2), 113–117.

    Article  Google Scholar 

  6. Wallace, J. W., & Jensen, M. A. (2004). Mutual coupling in MIMO wireless systems: A rigorous network theory analysis. IEEE Transactions on Wireless Communication, 3(4), 1317–1325.

    Article  Google Scholar 

  7. Harrington, R. F. (1993). Field computation by moment methods. New York: IEEE Press.

    Book  Google Scholar 

  8. Adve, R. S., & Sarkar, T. K. (2000). Compensation for the effects of mutual coupling on direct data domain adaptive algorithms. IEEE Transactions on Antennas and Propagation, 48(1), 86–94.

    Article  Google Scholar 

  9. Lau, C. K. E., Adve, R. S., & Sarkar, T. K. (2004). Minimum norm mutual coupling compensation with applications in direction of arrival estimation. IEEE Transactions on Antennas and Propagation, 52(8), 2034–2040.

    Article  Google Scholar 

  10. Darwood, P., Fletcher, P. N., & Hilton, G. S. (1998). Mutual coupling compensation in small planar array antennas. IEEE Proceedings on Microwave, Antennas and Propagation, 145(1), 1–6.

    Article  Google Scholar 

  11. Su, T., & Ling, H. (2001). On modeling mutual coupling in antenna arrays using the coupling matrix. Microwave Optical Technology Letters, 28(4), 231–237.

    Article  Google Scholar 

  12. Fletcher, P. N., Dean, M., & Nix, A. R. (2003). Mutual coupling in multi-element array antennas and its influence on MIMO capacity. Electronics Letters, 39(4), 342–344.

    Article  Google Scholar 

  13. Zaharis, Z. D., Samaras, T., Vafiadis, E., & Sahalos, J. N. (2006). Antenna array design by the orthogonal method in conjunction with element patterns. Microwave Optical Technology Letters, 48(8), 1578–1583.

    Article  Google Scholar 

  14. Kelly, D. F., & Stutzman, W. L. (1993). Array antenna pattern modelling methods that include mutual coupling effects. IEEE Transactions on Antennas and Propagation, 41, 1625–1632.

    Article  Google Scholar 

  15. Li, X., & Nie, Z. P. (2004). Mutual coupling effects on the performance of MIMO wireless channels. IEEE Antennas Wireless Propagation Letter, 3(1), 344–347.

    Article  MathSciNet  Google Scholar 

  16. Aumann, H. M., Fenn, A. J., & Willwerth, F. G. (1989). Phased array antenna calibration and pattern prediction using mutual coupling measurements. IEEE Transactions on Antennas and Propagation, 37(7), 844–850.

    Article  Google Scholar 

  17. Kim, K., Sarkar, T. K., & Palma, M. S. (2002). Adaptive processing using a single snapshot for a nonuniformly spaced array in the presence of mutual coupling and nearfield scatterers. IEEE Transactions on Antennas and Propagation, 50(5), 582–590.

    Article  Google Scholar 

  18. Wang, Y., & Xu, S. (2003). Mutual coupling calibration of DBF array with combined optimisation method. IEEE Transactions on Antennas and Propagation, 51(10), 2947–2952.

    Article  Google Scholar 

  19. Hui, H. T. (2003). Compensating for the mutual coupling effect in direction finding based on a new calculation method for mutual impedance. IEEE Antennas Wireless Propagation Letters, 2(1), 26–29.

    Article  Google Scholar 

  20. Hui, H. T. (2005). An effective compensation method for the mutual coupling effect in phased arrays for magnetic resonance imaging. IEEE Transactions on Antennas and Propagation, 53(10), 3576–3583.

    Google Scholar 

  21. Hui, H. T., Li, B. K., & Crozier, S. (2006). A new decoupling method for quadrature coils in magnetic resonance imaging. IEEE Transactions Biomedical Engineering, 53(10), 2114–2116.

    Article  Google Scholar 

  22. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000, May). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184–4187.

    Google Scholar 

  23. Shelby, R. A., Smith, D. R., Nemat-Nasser, S. C., & Schultz, S. (2000, Jan). Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Applied Physics Letters, 78, 489–491.

    Google Scholar 

  24. Ziolkowski, R. W., & Kipple, A. (2003, Oct). Application of double negative metamaterials to increase the power radiated by electrically small antennas. IEEE Transactions on Antennas and Propagation, 51(10), 2626–2640.

    Google Scholar 

  25. Hao, Y., & Mittra, R. (2009). FDTD modeling of metamaterials: Theory and applications. Artech House.

  26. Ziolkowski, R. W., & Kipple, A. (2003, Aug). Causality and double-negative metamaterials. Physical Review E, 68, 026615.

    Google Scholar 

  27. Al‘u, A., & Engheta, N. (2003). Pairing an epsilon-negative slab with a mu-negative slab: Anomalous tunneling and transparency. IEEE Transactions on Antennas and Propagation, Special Issue on Metamaterials, AP–51(10), 2558–2570.

    Article  Google Scholar 

  28. Sievenpiper, D., Lijun, Z., Broas, R. F., Alexopoulos, N. G., & Yablonovitch, E. (1999, Nov). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory Techniques, 47(11), 2059–2074.

    Google Scholar 

  29. McVay, J., Engheta, N., & Hoorfar, A. (2004, March). High impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microwave and Wireless Components Letters, 14(3), 130–132.

    Google Scholar 

  30. Mosallaei, H., & Sarabandi, K. (2004, June). Magneto dielectric in electromagnetic concept and application. IEEE Transactions on Antennas and Propagation, 52(6), 1558–1567.

    Google Scholar 

  31. Ikonen, P. M. T., Rozanov, K. N., Osipov, A. V., Alitalo, P., & Tretyakov, S. A. (2006, Nov). Magneto-dielectric substrates in antenna miniaturization: Potential and limitations. IEEE Transactions on Antennas and Propagation, 54(11), 3391–3399.

    Google Scholar 

  32. Capolino, F. (2009). Theory and phenomena of metamaterials. Boca Raton: CRC Press.

    Book  Google Scholar 

  33. Yablonovitch, E. (1993, Feb). Photonic band-gap crystals. Journal of Physics: Condensed Matter, 5(16), 2443–2460

    Google Scholar 

  34. Engheta, N., & Ziolkowski, R. W. (2006). Metamaterials: Physics and engineering explorations. London: Wiley-IEEE Press.

    Book  Google Scholar 

  35. de Maagt, P., Gonzalo, R., Vardaxoglou, Y., & Baracco, J.-M. (2003). Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave applications. IEEE Transactions on Antennas and Propagation, 51(10), 2667–2677.

    Article  Google Scholar 

  36. Qian, Y., Radisic, V., & Itoh, T. (1997). Simulation and experiment of photonic band-gap structures for microstrip circuits. In Microwave conference proceedings, APMC ’97 (Vol. 2, pp. 585–588).

  37. Yu, A., & Zhang, X. (2003). A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure. IEEE Antennas and Wireless Propagation Letters, 2(1), 170–172.

    Article  Google Scholar 

  38. Gauthier, G. P., Courtay, A., & Rebeiz, G. H. (1997, Aug). Microstrip antennas on synthesized low dielectric-constant substrate. IEEE Transactions on Antennas and Propagation, 45(8), 1310–1314.

    Google Scholar 

  39. Colburn, J. S., & Rahmat-Samii, Y. (1999, Dec). Patch antennas on externally perforated high dielectric constant substrates. IEEE Transactions on Antennas and Propagation, 47(12), 1785–1794.

    Google Scholar 

  40. Yang, F., & Rahamat-samii, Y. (2003, Oct). Microstrip antennas integrated with electromagnetic band–gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation, 51(10), 2936–2946.

    Google Scholar 

  41. Iluz, Z., Shavit, R., & Bauer, R. (2004, June). Microstrip antenna phased array with electromagnetic bandgap substrate. IEEE Transactions on Antennas and Propagation, 52(6), 1446–1453.

    Google Scholar 

  42. Abedin, M. F., & Ali, M. (2005). Effects of a smaller unit cell planar EBG structure on the mutual coupling of a printed dipole array. IEEE Antenas and Wireless Propagation Letters, 4, 274–276.

    Article  Google Scholar 

  43. Yang, L., Fan, M., Vhen, F., She, J., & Feng, Z. (2005, Jan). A novel compact electromagnetic–bandgap (EBG) structure and its application for microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 53(1), 183–190.

    Google Scholar 

  44. Yang, L., Fan, M., & Feng, Z. (2005). A spiral electromagnetic (EBG) structure and its application in microstrip antenna arrays. In IEEE microwave conference proceedings, APMC 2005 (Vol. 3).

  45. Rajo-iglesias, E., Quevedo-teruel, O., & Inclan-sanchez, L. (2008). Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate. IEEE Transactions on Antennas and Propagation, 56(6), 1648–1655.

    Article  Google Scholar 

  46. Zheng, Q. R., Fu, Y. Q., & Yuan, N. C. (2008, June). A novel compact spiral electromagnetic band–gap (EBG) structure. IEEE Transactions on Antennas and Propagation, 56(6), 1656–1660.

    Google Scholar 

  47. Farahani, H. S., Veysi, M., Kamyab, M., & Tadjalli, A. (2010). Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Antennas and Wireless Propagation Letters, 9, 57–59.

    Article  Google Scholar 

  48. Assimonis, S. D., Yioultsis, T. V., & Antonopoulos, C. S. (2012, Feb). Computational investigation and design of planar EBG structures for coupling reduction in antenna applications. IEEE Transactions on Magnetics, 48(2), 771–774.

    Google Scholar 

  49. Assimonis, S. D., Yioultsis, T. V., & Antonopoulos, C. S. (2012, June). Design and optimization of uniplanar EBG structures for low profile antenna applications and mutual coupling reduction. IEEE Transactions on Antennas and Propagation, 60(10), 4944–4949.

    Google Scholar 

  50. Kim, C. S., Park, J. S., Ahn, D., & Lim, J. B. (2000, April). A novel 1-D periodic defected ground structure for planar circuits. IEEE Microwave and guided wave letters, 10(4), 131–133.

    Google Scholar 

  51. Liu, H., Li, Z., & Sun, X. (2005). Compact defected ground structure in microstrip technology. Electronics Letters, 41(3), 132–134.

    Article  Google Scholar 

  52. Mandal, M. K., & Sanyal, S. (2006). A novel defected ground structure for planar circuits. IEEE Microwave and Wireless Component Letters, 16(2), 93–95.

    Article  Google Scholar 

  53. Karmakar, N. C., Roy, S. M., & Balbin, I. (2006, May). Quasi-static modeling of defected ground structure. IEEE Transactions on Microwave Theory and Techniques, 54(5), 2160–2168.

    Google Scholar 

  54. Weng, L. H., Guo, Y. C., Shi, X. W., & Chen, X. Q. (2008). An overview on defected ground structure. Progress In Electromagnetics Research B, 7, 173–189.

    Article  Google Scholar 

  55. Thomson, A. F., & Gopinath, A. (1975, Aug). Calculation of microstrip discontinuity inductances. IEEE Transactions on Microwave Theory and Techniques, 23(8), 648–655.

    Google Scholar 

  56. Hamad, E. K. I., Safwat, A. M. E., & Omar, A. S. (2005). Controlled capacitance and inductance behavior of L-shaped defected ground structure for coplanar waveguide. IEEE Proceedings Microwave Antennas and Propagation, 152(5), 299–304.

    Article  Google Scholar 

  57. Lim, J.-S., Kim, C.-S., Lee, Y.-T., Ahn, D., & Nam, S. (2002, Sept). A spiral-shaped defected ground structure for coplanar waveguide. IEEE Microwave Wireless Component Letters, 12(9), 330–332.

    Google Scholar 

  58. Boutejdar, A., Nadim, G., Amari, S., & Omar, A. S. (2005). Control of bandstop response of cascaded microstrip low-pass-bandstop filters using arrowhead slots in backside metallic ground plane. IEEE Antennas and Propagation Society International Symposium, 1B, 574–577.

    Google Scholar 

  59. Li, J. L., Chen, J. X., Xue, Q., & Wang, J. (2005). Compact microstrip lowpass filter based on defected ground structure and compensated microstrip line. In IEEE MTT-S international microwave symposium digest (pp. 1483–1486).

  60. Chen, H.-J., Huang, T.-H., Chang, C.-S., Wang, N.-F., Wang, Y.-H., & Houng, M.-P. (2006). A novel crossshape DGS applied to design ultra-wide stopband low-pass filters. IEEE Microwave and wireless Component Letters, 16(5), 252–254.

    Article  Google Scholar 

  61. Guha, D., Biswas, S., Biswas, M., Siddiqui, J. Y., & Antar, Y. M. M. (2006). Concentric ring-shaped defected ground structures for microstrip applications. IEEE Antennas and Wireless Propagation Letters, 5(1), 402–405.

    Article  Google Scholar 

  62. Chiu, C.-Y., Cheng, C.-H., Murch, R. D., & Rowell, C. R. (June 2007). Reduction of mutual coupling between closely packed antenna elements. IEEE Transactions on Antennas and Propagation, 55(6), 1732–1738.

    Google Scholar 

  63. Zhu, F.-G., Xu, J.-D., & Xu, Q. (June 2009). Reduction of mutual coupling between closely packed antenna elements using defected ground structure. Electronics Letters, 45(12), 601–602.

    Google Scholar 

  64. Dadashzadeh, G., Dadgarpour, A., Jolani, F., & Virdee, B. S. (2011, Jan). Mutual coupling suppression in closely spaced antennas. IET Microwave Antennas and Propagation, 5(1), 113–125.

    Google Scholar 

  65. Zulkifli, F. Y., Rahardjo, E. T., & Hartanto, D. (2010). Mutual coupling reduction using dumbell defected ground structure for multiband microstrip antenna array. Progress in Electromagnetics Research Letters, 13, 29–40.

    Article  Google Scholar 

  66. Xiao, S., Tang, M. C., Bai, Y. Y., Gao, S., & Wan, B. Z. (2011, Sept). Mutual coupling suppression in microstrip array using defected ground structrure. IET Microwave Antennas and Propagation, 5(12), 1488–1494.

    Google Scholar 

  67. Damiano, J. P., Bennegueouche, J., & Papiernik, A. (1990). Study of multilayer microstrip antennas with radiating elements of various geometry. IEE Proceedings Microwaves, Antennas and Propagation, 137(3), 163–170.

  68. Sanad, M. (1996). A compact dual broadband microstrip antenna having both stacked and planar parasitic elements. Antennas and Propagation Society International Symposium, 1, 6–9.

    Google Scholar 

  69. Marqués, R., Martín, F., & Sorolla, M. (2007). Metamaterial with negative parameter, theory, design and microwave application. London: Wiley Interscience.

    Book  Google Scholar 

  70. Eleftheriades, G. V., & Balmain, K. G. (2005). Negative refraction metamaterials. London: Wiley Interscience.

    Book  Google Scholar 

  71. Pendry, J. B., Holden, A. J., Stewart, W. J., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773–4776.

    Article  Google Scholar 

  72. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184–4187.

    Article  Google Scholar 

  73. Ziolkowski, R. W., & Erentok, A. (2006). Metamaterial-based efficient electrically small antennas. IEEE Transactions on Antennas and Propagation, 54(7), 2113–2130.

    Article  Google Scholar 

  74. Mosallaei, H., & Sarabandi, K. (2004). Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Transactions on Antennas and Propagation, 52(9), 2403–2414.

    Article  Google Scholar 

  75. Mookiah, P., & Danddekar, K. R. (October 2009). Metamaterial-substrate antenna array for MIMO communication system. IEEE Transactions on Antennas and Propagation, 57(10), 3283–3292.

  76. Bait-Suwailam, M. M., Siddiqui, O. F., & Ramahi, O. M. (2010). Mutual coupling reduction between microstrip patch antennas using slotted-complementary split–ring resonators. IEEE Antennas and Wireless Propagation Letters, 9, 876–878.

    Article  Google Scholar 

  77. Habashi, A., Nourinia, J., & Ghobadi, C. (2011). Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split–ring resonators (FSRRS). IEEE Antennas and Wireless Propagation Letters, 10, 862–865.

    Article  Google Scholar 

  78. Han, X., Hafdallah Ouslimani, H., Zhang, T., & Priou, A. C. (2012). CSRRS for efficient reduction of the electromagnetic interference and mutual coupling in microstrip circuits. Progress in Electromagnetics Research B, 42, 291–309.

    Article  Google Scholar 

  79. Simovski, C. R., & Sochava, A. A. (2003). High impedance surfaces based on self-resonant grids analytical modelling and numerical simulations. Progress in Electromagnetics Research, 43, 239–256.

    Article  Google Scholar 

  80. Xin, H., Matsugatani, K., Kim, M., Hacker, J., Higgins, J. A., Rosker, M., et al. (2002). Mutual coupling reduction of low-profile monopole antennas on high-impedance ground plane. Electronics letters, 38(16), 849–850.

    Article  Google Scholar 

  81. Rajo-Iglesias, E., Quevedo-Teruel, Ó., & Inclán-Sánchez, L. (December 2009). Planar soft surfaces and their application to mutual coupling reduction. IEEE Transactions on Antennas and Propagation, 57(12), 3852–3859.

  82. Capet, N., Martel, C., Sokoloff, J., & Pascal, O. (2011). Optimum high impedance surface configuration for mutual coupling reduction in small antenna arrays. Progress in Electromagnetics Research B, 32, 283–297.

    Article  Google Scholar 

  83. Liu, R., Yang, X. M., Gollub, J. G., Mock, J. J., Cui, T. J., & Smith, D. R. (2009). Gradient index circuit by waveguided metamaterials. Applied Physics Letters, 94(7), 073506–073506-3.

    Article  Google Scholar 

  84. Yang, X. M., Liu, X. G., Zhou, X. Y., & Cui, T. J. (2012). Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials. IEEE Antennas and Wireless Propagation Letters, 11, 389–391.

    Article  Google Scholar 

  85. Alsath, M. G. N., Kanagasabai, M., & Balasubramanian, B. (2013). Implementation of slotted meander line resonators for isolation enhancement in microstrip patch antenna arrays. IEEE Antennas and Wireless Propagation Letters, 12, 15–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Gangwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangwar, D., Das, S. & Yadava, R.L. Reduction of Mutual Coupling in Metamaterial Based Microstrip Antennas: The Progress in Last Decade. Wireless Pers Commun 77, 2747–2770 (2014). https://doi.org/10.1007/s11277-014-1666-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1666-6

Keywords

Navigation