Skip to main content
Log in

Probabilistic Dynamic Framed Slotted ALOHA for RFID Tag Identification

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we study radio frequency identification tag identification problems using framed slotted ALOHA protocol. Each tag will be assumed to participate in the contention with a certain probability. Then, the frame size and the probability will be dynamically controlled by the reader in every reading round so that all the tags can be detected in a short period of time. Moreover, we propose a practical way of controlling the probability in terms of transmit power control, assuming Additive White Gaussian Noise channel or flat Rayleigh fading channel. Computer simulation results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Finkenzeller, K. (2003). RFID Handbook: Fundamentals and applications in contactless smart cards and identification. New York: Wiley.

    Google Scholar 

  2. Angeles, R. (2005). RFID technologies: Supply-chain applications and implementations issues. Information Systems Management, 22(1), 51–65.

    Article  MathSciNet  Google Scholar 

  3. Molnar, D., & Wagner, D. (2004). Privacy and security in library RFID: Issues, practices, and architectures. Proceedings of the 11th ACM conference on computer and communication, security, pp. 210–219.

  4. Hush, D., & Wood, C. (1998, August). Analysis of tree algorithm for RFID arbitration. Proceedings of the IEEE international symposium on information theory p. 107.

  5. Roberts, L. G. (1975). ALOHA packet system with and without slots and capture. ACM SIGCOMM Computer Communication Review, 5, 28–42.

    Article  Google Scholar 

  6. EPC global radio frequency identity protocols class-1 generation-2 UHF RFID protocol for communications at 860MHz-960MHz version 1.2.0, Technical, Report, (2008). http://www.gsl.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf

  7. Cui, Y., & Zhao, Y. (2008, May). Mathematical analysis for binary tree algorithm in RFID. Proceedings of the IEEE vehicular technology conference VTC, pp. 2725–2729.

  8. Law, C., Lee, K., & Siu, K.-Y. (2000, August). Efficient memoryless protocol for tag identification. Proceedings of the 4th international workshop on discrete algorithms and methods for mobile computing and communications (p. 7584) ACM.

  9. Auto-ID Center. (2003). Draft protocol specification for a 900MHz class 0 radio frequency identification tag.

  10. Chen, W.-T. (2008). Performance comparison of binary search tree and framed aloha algorithms for RFID anti-collision. IEICE Transactions on Communications, E91–B(4), 1168–1171.

    Article  Google Scholar 

  11. Zhu, L., & Yum, T.-S. P. (2010). The optimal reading strategy for EPC Gen-2 RFID anti-collision systems. IEEE Transactions on Communications, 58(9), 2725–2733.

    Article  Google Scholar 

  12. Choi, S. S., & Kim, S. (2009). A dynamic framed slotted ALOHA algorithm using collision factor for RFID identification. IEICE Transactions on Communications, E92–B(3), 1023–1026.

    Article  Google Scholar 

  13. Deng, D.-Z., & Tsao, H.-W. (2010). Optimal dynamic framed slotted ALOHA based anti-collision algorithm for RFID systems. Wireless Personal Communications, 59(1), 109–122.

    Article  Google Scholar 

  14. Fan, X., Song, I., & Chang, K. (2008, December). Gen2-based hybrid tag anti-collision Q algorithm using Chebyshev’s inequality for passivie RFID systems. Proceedings of the 19th IEEE international symposium on personal, indoor and mobile radio communications, PIMRC, pp. 1–5.

  15. Floerkemeier, C. (2007, March). Bayesian transmission strategy for framed ALOHA based RFID protocols. Proceedings of IEEE international conference on RFID, pp. 228–235.

  16. Chen, W.-T. (2009). An accurate tag estimate method for improving the performance of an RFID anticollision algorithm based on dynamic frame length ALOHA. IEEE Transactions on Automation Science and Engineering, 6(1), 9–15.

    Article  Google Scholar 

  17. Cha, J-R, & Kim, J-H (2006). Dynamic framed slotted ALOHA algorithms using fast tag estimation method for RFID system. Proceedings of the 3rd IEEE conference on consumer communications and networking vol. 2, pp. 768–772.

  18. Vogt, H. (2002, April). Efficient object identification with passive RFID tags. Proceedings of international conference on, pervasive computing pp. 98–113.

  19. Bolíc, M., Simplot-Ryl, D., & Stojmenovíc, I. (2010). RFID systems: Research trends and challenges. New York: Wiley.

    Book  Google Scholar 

  20. Qian, C., Ngan, H., Liu, Y., & Ni, L. M. (2011). Cardinality estimation for large-scale RFID systems. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1441–1454.

    Article  Google Scholar 

  21. Auto-ID Center. (2003). 13.56 MHz ISM band class 1 radio frequence identification tag interface specification, version 1.0. HF RFID standard. http://www.epcglobalinc.org/standards/specs/.

  22. Ali, K., Hassanein, H., & Taha, A.-E. M. (2007, October). RFID anti-collision protocol for dense passive tag enviroments. Proceedings of the 32nd IEEE conference on local, computer networks, pp. 819–824.

  23. Xin-qing, Y., Zhou-ping, Y., & You-lun, X. (2008, October). QTS ALOHA: A hybrid collision resolution protocol for dense RFID networks. Proceedings of the IEEE international conference on e-business engineering pp. 557–562.

  24. Sze, W.-K., Lau, W.-C., & Yue, O.-C. (2009, June). Fast RFID counting under unreliable radio channel. Proceedings of the IEEE internation conference in, communications, pp. 1–5.

  25. Mansouri, V. S., & Wong, V. W. S. (2011). Cardinality estimation in RFID systems with multiple readers. IEEE Transactions on Communications, 10(5), 1458–1469.

    Google Scholar 

  26. Kim, D.-Y., Yoon, H.-G., Jang, B.-J., & Yook, J.-G. (2009). Effects of reader-to-reader interference on the UHF RFID interrogation range. IEEE Transactions on Communications, 57(7), 2337–2346.

    Google Scholar 

  27. Pourbagheri, S., Bakhtiar, M. S., & Atarodi, M. (2008, December). Cellular design for a dense RFID reader environment. Proceedings of the IEEE Asia pacific conference on circuits and systems pp. 1124–1127.

  28. Al-Fagih, A. E., Al-Turjman, F. M., Hassanein, H. S., & Alsalih, W. M. (2012, June). Coverage-based placement in RFID networks: An overview. Proceedings of the third FTRA international conference on mobile, ubiquitous and intelligent computing pp. 1124–1127.

  29. Kodialam, M., & Nandagopal, T. (2006, September). Fast and reliable estimation schemes in RFID systems. Proceedings of the 12th annual international conference on mobile computing and networking, pp. 322–333.

  30. Schoute, F. C. (1983). Dynamic frame length ALOHA. IEEE Transactions on Communications, 31(4), 565–568.

    Article  Google Scholar 

  31. Kim, J., Lee, W., Kim, E., Kim, D., & Suh, K. (2007). Optimized transmission power control of interrogators for collision arbitration in UHF RFID systems. IEEE Communications Letters, 11(1), 22–24.

    Article  Google Scholar 

  32. Philips Semiconductors. I-CODE smart label RFID tags. http://www.semiconductors.philips.com/acrobat_download/other/identification/SL092030.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuyen T. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, C.T., Hayashi, K., Kaneko, M. et al. Probabilistic Dynamic Framed Slotted ALOHA for RFID Tag Identification. Wireless Pers Commun 71, 2947–2963 (2013). https://doi.org/10.1007/s11277-012-0981-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0981-z

Keywords

Navigation