Skip to main content
Log in

Access Point Height Based Location Accuracy Characterization in LOS and OLOS Scenarios

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Location estimation in a wireless local area network (WLAN) using received signal strength indication (RSSI) has gained considerable attention in recent years. In a conventional RSSI based indoor WLAN localization, mobile node position is estimated through access point (AP) placed at ceiling height. Researchers have proposed solutions for location estimation in line of sight (LOS) scenarios, by installing the AP at a fixed position. This paper demonstrates the improved location accuracy in LOS and obstructed line of sight (OLOS) scenarios by placing the AP at lower heights. The RSSI variations caused by shadow fading for changing AP heights are used to estimate the location accuracy. The localization performance is computed in terms of Cramer-Rao lower bound (CRLB) of range estimate under dynamic environments which is relatively less complex computation technique and is calibration free. Simulation results reveal that the proposed method has better performance than the multilateration with linearization for access point localization algorithm. The minimum mean localization errors are obtained by deploying the access point at 2 m height. The results also demonstrate that the indoor localization accuracy improves for higher order path loss exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pahlvan K., Li X., Makela J. (2002) Indoor geolocation science and technology. IEEE Communications Magazine 40(2): 112–118

    Article  Google Scholar 

  2. Deasy T. P., Scanlon W. G. (2007) Simulation or measurement: The effect radio map creation on indoor WLAN–based localization accuracy. Wireless Personal Communications 42: 563–573

    Article  Google Scholar 

  3. Borriello, G., Chalmers, M., LaMarca, A., & Nixon, (2005). Delivering real world ubiquitous location systems. Communications of the ACM, 48(3), 36–41.

  4. Enge, P., & Misra, P. (1999). Scanning the special issue/technology on the global positioning system. In Proceedings of IEEE special issue on GPS, 87, 3–15.

  5. Li D., Wong K.D., Hu Y.H., Sayeed A.M. (2002) Detection, classification and tracking of targets. IEEE Signal Processing Magazine 19(2): 17–29

    Article  Google Scholar 

  6. Gezici S. (2008) A survey on wireless position estimate. Wireless Personal Communications 44: 263–282

    Article  Google Scholar 

  7. Li X., Pahlvan K. (2004) Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communications 3(1): 224–234

    Article  Google Scholar 

  8. Catovic A., Sahinoglu Z. (2004) The Cramer-Rao Bounds of hybrid TOA/RSS location estimation schemes. IEEE Communication Letters 8(10): 626–628

    Article  Google Scholar 

  9. Patwari N., Hero A. O., Perkins. Correal N. S., O’Dea R. J. (2003) Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing 51(8): 2137–2148

    Article  Google Scholar 

  10. Fang S., Lin T. (2008) Indoor location system based on discriminator-adaptive neural network in IEEE 802.11environments. IEEE Transactions on Neural networks 19(11): 1973–1978

    Article  Google Scholar 

  11. Miloš N. B., Aleksandar M. N. (2009) Positioning in WLAN environment by use of artificial neural networks and space partitioning. Annals of Telecommunications 64: 665–676

    Article  Google Scholar 

  12. Chin, K., Shum, Y., Cheng, Q. J., Ke, J., Ng, Y., & Ng, D. (2011). A signal strength based location estimation algorithm within a wireless network. In Proceedings of international conference on advanced information networking applications, pp. 1001–1011.

  13. Jain, V. K., Tapaswi, S., & Shukla, A. (2012). Performance analysis of received signal strength fingerprinting based distribution location estimation system for indoor WLAN. Wireless Personal Communications, doi:10.1007/s11277-012-0682-7.

  14. Chen, Y. & Kobayashi, H. (2002). Signal strength based indoor geolocation. In Proceedings of the IEEE international conference on communications, vol. 1, (pp. 436–439).

  15. Krishnan, P., Krishnakumar, A. S., Ju, W., Mallows, C., & Ganu, S. (2004). A system for LEASE: Location estimation assisted by stationary emitters for indoor RF wireless networks. In Proceedings of the 23rd annual joint IEEE conference computer communication society, vol. 2, (pp. 1001–1011). Hong Kong, March 2004.

  16. Battiti, R., Nhat, T., & Villani, A. (2002). Location–aware computing: A neural network model for determining location in wireless LANs. Technical-Report DIT-02-083, Ingegneria e Scienza dell’ Informatzione, University of Trento.

  17. Kushki A., Plataniotis K., Venetsanopoulos A. (2007) Kernel-based positioning in wireless local area networks. IEEE Transactions on Mobile Computing 6(6): 689–705

    Article  Google Scholar 

  18. Zemek, R., Takashima, M., Hara, S., Yangihara, K., Fukui, K., Fukunaga, S., & Kitayama, K. (2006). An effect of anchor node placement on a target location estimation performance. In Proceedings of the IEEE region10 conference, (pp. 1–4).

  19. Mitilineos S. A. (2011) Blind position location via geometric loci construction. Wireless Personal Communications 60: 665–677

    Article  Google Scholar 

  20. Koo J., Cha H. (2011) Localizing wifi access points using signal strength. IEEE Communications Letters 15(2): 187–189

    Article  Google Scholar 

  21. Vizireanu D. N., Halunga S. V. (2012) Simple, fast and accurate eight point amplitude estimate of sinusoidal signals for DSP based instrumentation. Journal of Instrumentation 7(4): 1–10

    Article  Google Scholar 

  22. Vizireanu D. N. (2012) A fast and simple and accurate time varying frequency estimation method for single phase electric power systems. Measurement 45: 1331–1333

    Article  Google Scholar 

  23. Kameoka H., Ono N., Sagayama S. (2010) Speech spectrum modeling for joint estimation of spectral envelope and fundamental frequency. IEEE Transactions on Audio, Speech and Language Processing 18(6): 1507–1516

    Article  Google Scholar 

  24. He Q., Blum R. S., Godrich H., Haimovich A. M. (2010) Target velocity estimation and antenna placement for MIMO radar with widely separated antennas. IEEE Journal of Selected Topics in Signal Processing 4(1): 79–100

    Article  Google Scholar 

  25. Gustafson F., Gunnarson F. (2005) Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Processing Magazine 22(4): 41–53

    Article  Google Scholar 

  26. Qi, Y. (2003). Wireless geolocation in a non-line-of environment. Ph.D. dissertation, Princeton, NJ: Princeton University.

  27. Heikki L., Suvi J., Timo L., Risto K., Jakko L. (2007) Experimental evaluation of location methods based on signal strength measurements. IEEE Transactions on Vehicular Technology 56(1): 287–296

    Article  Google Scholar 

  28. Rappaport T. (2002) Wireless communications: Principles and practice. Pearson Education, Inc., Singapore

    Google Scholar 

  29. Salo J., Vukko L., El-Satllabi H. M., Vainikainen P. (2007) An additive model as a physical basis for shadow fading. IEEE Transactions on Vehicular Technology 56(1): 13–26

    Article  Google Scholar 

  30. Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory. Prentice Hall PTR.

  31. Mazuleas, A., Bahillo, A., Lorenzo, R. M., Fernadez, P., Lago, F. A., Garcia, E., et al. (2009). Robust indoor positioning provided by real time RSSI values in unmodified WLAN networks. IEEE Journal of Selected Topics in Signal Processing, 3(5), 821–831.

    Google Scholar 

  32. Milner, M. (2004). Networkstumbler 0.4.0 notes, http://www.stumbler.net/readme/readme_0_4_0.html.pdf. Accessed on 20th February, 2012.

  33. Li X. (2006) RSS-based location estimation with unknown pathloss model. IEEE Transactions on Wireless Communications 5(12): 3626–3633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udaykumar Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, U., Bapat, V.N. Access Point Height Based Location Accuracy Characterization in LOS and OLOS Scenarios. Wireless Pers Commun 71, 2247–2258 (2013). https://doi.org/10.1007/s11277-012-0934-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0934-6

Keywords

Navigation