Skip to main content
Log in

Pilot Tones Optimization Using Artificial Bee Colony Algorithm for MIMO–OFDM Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

How to design the pilot tones that are used in channel estimation has a significant effect on the estimation performance. To achieve good performance in least square (LS) algorithm, we propose the artificial bee colony (ABC) algorithm for optimizing the placement of pilot tones in MIMO–OFDM systems. We also derive the upper bound of mean square error of LS estimation with the help of Gerschgorin disc theorem for fitness function of ABC algorithm. The results show that designing pilot tones using the ABC algorithm outperforms other considered placement strategies in terms of high system performance and low computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sampath H., Talwar S. (2002) A fourth-generation MIMO–OFDM broadband wireless systems: Design, performance and field trial results. IEEE Communication Magazine 40(9): 143–149

    Article  Google Scholar 

  2. Coleri S., Ergen M., Puri A., Bahai A. (2002) Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting 48(3): 223–229

    Article  Google Scholar 

  3. Seyman M. N., Taspinar N. (2008) Channel estimation based on adaptive neuro-fuzzy inference system in OFDM. IEICE Transactions on Communications E91-B(7): 2426–2430

    Article  Google Scholar 

  4. Seyman M. N., Taspinar N. (2012) MIMO–OFDM channel estimation using ANFIS. Elektronika Ir Elektrotechnika 4(120): 75–78

    Google Scholar 

  5. Minn H., Al-Dhair N. (2006) Optimal training signals for MIMO OFDM channel estimation. IEEE Transactions on Wireless Communication 5: 1158–1168

    Article  Google Scholar 

  6. Barhumi I., Leus G., Moonen M. (2003) Optimal training design for MIMO–OFDM systems in mobile wireless channels. IEEE Transactions on Signal Processing 51(6): 1615–1623

    Article  Google Scholar 

  7. Wu, Z., He, J., & Gu, G. (2005). Design of optimal pilot tones for channel estimation in MIMO–OFDM systems. In Proceedings of the IEEE wireless communications and networking conference (Vol. 1, pp. 12–17).

  8. Dong M., Tong L. (2002) Optimal design and placement of pilot symbols for channel estimation. IEEE Transactions on Signal Processing 50(12): 3055–3068

    Article  MathSciNet  Google Scholar 

  9. Panah A. Y., Vaughan R. G., Heath R. W. (2009) Optimizing pilot locations using feedback in OFDM systems. IEEE Transactions on Vehicular Technology 58(6): 2803–2814

    Article  Google Scholar 

  10. Hu D. H., Wang X. (2011) An efficient pilot design method for OFDM-based cognitive radio systems. IEEE Transactions on Wireless Communications 10(4): 1252–1259

    Article  Google Scholar 

  11. Zhang, Y., Xu, X., Chen, B., & Dai, X. (2010). A suboptimal pilot design for NC-OFDM. In Proceedings of the 12th IEEE international conference on communication technology (ICCT), pp. 801–804.

  12. Mavrokefalidis, C., Rontogiannis, A. A., & Berberidis, K. (2010). Optimal training design and placement for channel estimation in cooperative networks. In Proceedings of the IEEE 11th international workshop on signal processing advances in wireless communications (SPAWC), pp. 1–5.

  13. Kim K., Park H., Kwon H. M. (2012) Optimum clustered pilot sequence for OFDM systems under rapidly time-varying channel. IEEE Transactions on Communications 60(5): 1357–1370

    Article  Google Scholar 

  14. Kang J. W., Whang Y., Lee H. Y., Kim K. S. (2011) Optimal pilot sequence design for multi-cell MIMO–OFDM systems. IEEE Transactions on Wireless Communications 10(10): 3354–3367

    Article  Google Scholar 

  15. Xu, V., Wang, J., & Qi, F., (2009). Pilot-based angle domain channel estimation for MIMO–OFDM systems. In Proceedings of the interntional conference on communication and mobile computing, pp. 47–50.

  16. Seyman M. N., Taspinar N. (2011) Particle swarm optimization for pilot tones design in MIMO–OFDM systems. EURASIP Journal on Advances in Signal Processing 10(2011): 1–11

    Google Scholar 

  17. Seyman M. N., Taspinar N. (2012) Optimization of pilot tones using differential evolution algorithm in MIMO–OFDM Systems. Turkish Journal of Electrical Engineering Computer Science 20(1): 15–23

    Google Scholar 

  18. Karaboga, D. (2005). An idea based on bee swarm for numerical optimization. Tehnnical report-TR06, Erciyes University, Department of Computer Engineering.

  19. Karaboga D., Basturk B. (2008) On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8: 687–697

    Article  Google Scholar 

  20. Karaboga D., Akay B. (2009) A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation 214: 108–132

    Article  MathSciNet  MATH  Google Scholar 

  21. Taspinar N., Karaboga D., Yildirim M., Akay B. (2011) PAPR reduction using artificial bee colony algorithm in OFDM. Turkish Journal of Electrical Engineering Computer Science 19(1): 47–58

    Google Scholar 

  22. Taspinar N., Karaboga D., Yildirim M., Akay B. (2011) Partial transmit sequences based on artificial bee colony algorithm for peak-to-average power ratio reduction in multicarrier code division multiple access systems. IET Communications 5(8): 1155–1162

    Article  Google Scholar 

  23. Karaboga N. (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. Journal of Franklin Institute 346(4): 328–348

    Article  MathSciNet  MATH  Google Scholar 

  24. Chidanbaram, C., & Lopes, H. S., (2009). A new approach for template matching in digital images using an artificial bee colony algorithm. In Proceedings of the nature biologically inspired computing, pp. 146–151.

  25. Akdagli A., Toktas A. (2010) A novel expression in calculating resonant frequency of h-shaped compact microstrip antennas obtained by using artificial bee colony algorithm. Journal of Electromagnetic Wave Application 24(14–15): 2049–2061

    Google Scholar 

  26. Okdem, S., Karaboga, D., & Ozturk, C. (2011) An application of wireless sensor network routing based on artificial bee colony algorithm. In Proceedings of the IEEE congress on evolutionary computation (CEC), pp. 326–330.

  27. Ma M., Liang J., Guo M., Fan Y., Yin Y. (2011) Sar image segmentation based on artificial bee colony algorithm. Applied Soft Computing 11(8): 5205–5211

    Article  Google Scholar 

  28. Zhang, C., Li., Y., Li, Z., & Zhang, B. (2012). A multi-objective artificial bee colony algorithm for QoS based route optimization problem. In Proceedings of the IEEE international conference on systems informatics (ICSAI), pp. 1538–1541.

  29. Gerschgorin S. (1931) Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk.USSR Otd. Fiz.-Mat. Nauk 17: 749–754

    Google Scholar 

  30. Karaboga D., Başturk B. (2007) A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization 39(3): 459–471

    Article  MathSciNet  MATH  Google Scholar 

  31. Karaboga, D., & Başturk, B. (2007). Artificial bee colony algorithm on training artificial neural network. In Proceedings of the 15th IEEE signal proccesing and communication applications (SIU 2007), pp. 1–4.

  32. Akay, B., & Karaboga, D. (2009) Parameter tuning for the artificial bee colony algorithm. Lecture Notes in Computer Science (Vol. 5796, pp. 608–619).

  33. Jakes W. C. (1975) Microwave mobile communications. Wiley, New York

    Google Scholar 

  34. Dent P., Bottomley G. E., Croft T. (1993) Jakes fading model revisited. Electronic Letters 29(13): 1162–1163

    Article  Google Scholar 

  35. Horn R. A., Johnson C. R. (1985) Matrix analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Nuri Seyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyman, M.N., Taşpınar, N. Pilot Tones Optimization Using Artificial Bee Colony Algorithm for MIMO–OFDM Systems. Wireless Pers Commun 71, 151–163 (2013). https://doi.org/10.1007/s11277-012-0807-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0807-z

Keywords

Navigation