Skip to main content
Log in

WiMAX Double Movable Boundary Scheme in the Vehicle to Infrastructure Communication Scenario

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

WiMAX is an interesting technology that will be applied in vehicular networks due to the provisioning of high mobility, wide coverage, and different classes of service. In this paper, we investigate the problem of vehicular applications mapping in the Vehicular to Infrastructure scenario and propose a resource allocation algorithm applied in WiMAX networks. The proposed algorithm is a double movable boundary scheme which is based on dynamic sharing of resources between different traffic categories provided by a common resource pool. We provide as well a mathematical model of the mechanism and investigate the impact of critical resource allocation parameters on the overall performance. Performance results show that the algorithm respects the priority of real-time connections and prevents least-priority classes starvation problem. In fact, we strive to achieve two major components: fairness to different classes of service and service differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEEE Std 802.16e-2005. (2005). IEEE standard for local and metropolitan area networks-part 16: Air interface for fixed and mobile broadband wireless access systems.

  2. IEEE Std. 802.16-2004. (October, 2004). Local and metropolitan area networks, part 16: Air interface for fixed broadband wireless access systems.

  3. Naja, R., & Ahmad, A. (2010). On dynamic resource allocation in WiMAX networks. Journal of Computer Sciences. (In press, December issue).

  4. Jakubiak, J., & Koucheryavy, Y. (2008). State of the art and research challenges for VANETs. In Proceedings of the 5th IEEE consumer communications and networking conference (pp. 912–916).

  5. Fornasa, M., Zingirian, N., Maresca, M., & Baglietto, P. (2006). VISIONS: A service oriented architecture for remote vehicle inspection. In Proceedings of the intelligent transportation systems Conference (pp. 163–168), doi:10.1109/ITSC.2006.1706736.

  6. Inoue, S., Shozaki, K., & Kakuda, Y. (2007). An automobile control method for alleviation of traffic congestions using inter-vehicle ad hoc communication in lattice-like roads. In Proceedings of the IEEE globecom Conference (pp. 1–6), doi:10.1109/GLOCOMW.2007.4437828.

  7. Mohandas, B., Liscano, R., & Yang, O. (2009).Vehicle traffic congestion management in vehicular ad-hoc networks. In Proceedings of the IEEE LCN workshop on user mobility and vehicular networks (pp. 655–660), doi:10.1109/LCN.2009.5355052.

  8. Wang, Z., Kulik, L., & Ramamohanarao, K. (2007). Proactive traffic merging strategies for sensor-enabled cars. In Proceedings of the ACM international workshop on Vehicular ad hoc networks (pp. 39–48), ISBN: 978-1-59593-739-1.

  9. Giri S., Wall R. (2008) A safety critical network for distributed smart traffic signals. IEEE Instrumentation and Measurement Magazine 11(6): 10–16. doi:10.1109/MIM.2008.4694152

    Article  Google Scholar 

  10. Olaverri-Monreal, C., Gomes, P., Fernandes, R., Vieira, F., & Ferreira, M. (2010). The see-through system: A VANET-enabled assistant for overtaking maneuvers. In Proceedings of the IEEE intelligent vehicles symposium (pp. 123–128), doi:10.1109/IVS.2010.5548020.

  11. Chia-Hsiang, C., Chih-Hsun, C., Cheng-Jung L., & Ming-Da, L. (2009). A WAVE/DSRC-based intersection collision warning system. In Proceedings of the IEEE ultra modern telecommunications and Workshops Conference (pp. 1–6), doi:10.1109/ICUMT.2009.5345520.

  12. Chan, C. -Y. (2007). An investigation of traffic characteristics and their effects on driver behaviors in intersection crossing-path maneuvers. In Proceedings of the IEEE intelligent vehicles Symposium (pp. 781–786), doi:10.1109/IVS.2007.4290211.

  13. Dogan, A., Korkmaz, G., Liu, Y., Ozguner, F., Ozguner, U., Redmill, K., Takeshita, O., & Tokuda, K. (2004). Evaluation of intersection collision warning system using an inter-vehicle communication simulator. In Proceedings of the 7th IEEE intelligent transportation systems Conference (pp. 1103–1108), doi:10.1109/ITSC.2004.1399061.

  14. Farahmand, A.S., & Mili, L. (2009). Cooperative decentralized intersection collision avoidance using extended kalman filtering. In Proceedings of the IEEE intelligent vehicles symposium (pp. 977–982), doi:10.1109/IVS.2009.5164413.

  15. Yunpeng Z., Stibor, L., Reumerman, H. J., & Hiu C. (2008). Wireless local danger warning using inter-vehicle communications in highway scenarios. In Proceedings of the 14th European wireless confernce (pp. 1–7), doi:10.1109/EW.2008.4623905.

  16. Hawa, M., & Petr, D. W. (2002). Quality of service scheduling in cable and broadband wireless access system. In Proceedings of the IEEE international workshop on quality of service (pp. 247–255).

  17. Esmailpour, A., & Nasser, N. (2009). Packet scheduling scheme with quality of service support for mobile WiMAX networks. In Proceedings of IEEE WLN (pp. 1040–1045).

  18. Tarchi, D., Fantacci, R., & Bardazzi, M. (2006). Quality of service management in IEEE 802.16 wireless metropolitan area networks. In Proceedings of IEEE ICC (Vol. 4, pp. 1789–1794).

  19. Sayenko, A., Alanen, O., Karhula, J., & Hamalainen, T. (2006). Ensuring the QoS requirements in 802.16 scheduling. In Proceedings of MSWiM ’06

  20. Lai, Y., & Chen, Y. (2008). A channel quality and QoS aware bandwidth allocation algorithm for IEEE 802.16 base stations. In Proceedings of IEEE AINA (pp. 472–479).

  21. Mehrjoo, M., Dianati, M., Shen, X., & Naik, K. (2006). Opportunistic fair scheduling for the downlink of IEEE 802.16 wireless metropolitan area networks. In Proceedings of ACM quality of service in heterogeneous wired/wireless networks (Vol. 191).

  22. Mehrjoo, M., & Shen, X. (2008). An efficient scheduling scheme for heterogeneous traffic in IEEE 802.16 wireless metropolitan area networks. In Proceedings of IEEE IST (pp. 263–267).

  23. Wongthavarawat K., Ganz A. (2003) Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems. International Journal of Communication Systems 16(1): 81–96

    Article  MATH  Google Scholar 

  24. Chen J., Jiao W., Wang H. (2005) A service flow management strategy for IEEE 802.16 broadband wireless access systems in TDD mode. Proceeding of IEEE ICC 5: 3422–3426

    Google Scholar 

  25. Jiang, C.H., & Tsai, T.C.(2006). Token bucket based CAC and packet scheduling for IEEE 802.16 broadband wireless access network. In Proceedings of IEEE CCNC.

  26. Koraitim H., Tohmé S. (1999) Resource allocation and connection admission control in satellite networks. IEEE Journal on Seleted Areas in Communications 17(2): 360–372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rola Naja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naja, R., El Helou, M. & Tohmé, S. WiMAX Double Movable Boundary Scheme in the Vehicle to Infrastructure Communication Scenario. Wireless Pers Commun 67, 387–413 (2012). https://doi.org/10.1007/s11277-011-0389-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0389-1

Keywords

Navigation