Skip to main content
Log in

Time Synchronization for Cooperative Communication in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Time synchronization is crucial for the implementation of cooperative communication in wireless sensor networks. In this paper, we explore the effect of synchronization error on cooperative communication utilizing distributed Alamouti code. The analysis and simulation results show that small synchronization error has negligible effect on bit error rate (BER) performance. In order to synchronize the distributed sensor nodes within an acceptable error, we propose a physical layer synchronization scheme. This scheme consists of an initial synchronization of the cooperative transmitters, synchronization error estimation at the cooperative receiver and finally a feedback phase. A maximum likelihood method is proposed to make the synchronization error estimation. It achieves better performance than the matched filter method at the price of moderate increase in computational complexity and memory space. Two strategies after synchronization error estimation have been analyzed. They provide better BER performance in the existence of initial synchronization error. They are practical to be implemented in the sensor nodes before the Alamouti decoding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dohler M., Li Y., Vucetic B., Hamid Aghvami A., Arndt M. (2006) Performance analysis of distributed space-time block-encoded sensor networks. IEEE Transactions on Vehicular Technology 55(6): 1776–1789

    Article  Google Scholar 

  2. Cui S., Goldsmith Andrea J., Bahai A. (2004) Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications 22(6): 1089–1098

    Article  Google Scholar 

  3. Laneman J. N., Wornell G. W. (2003) Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 49(10): 2415–2425

    Article  MathSciNet  Google Scholar 

  4. Del Coso A., Spagnolini U., Ibars C. (2007) Cooperative distributed MIMO channels in wireless sensor networks. IEEE Journal on Selected Areas in Communications 25(2): 402–414

    Article  Google Scholar 

  5. Shuangqing W., Goeckel D. L., Valenti M. C. (2006) Asynchronous cooperative diversity. IEEE Transactions Communications 5(6): 1547–1557

    Google Scholar 

  6. Li Y., Xia X.-G. (2007) A family of distributed space-time trellis codes with asynchronous cooperative diversity. IEEE Transactions Communications 55(4): 790–800

    Article  MathSciNet  Google Scholar 

  7. Jagannathan, S., Aghajan, H., & Goldsmith, A. (2004). The effect of time synchronization errors on the performance of cooperative MISO systems. In IEEE GlobeCom (pp. 102–107).

  8. Mei, Y., Hua, Y., Swami, A., & Daneshrad, B. (2005). Combating synchronization errors in cooperative relays. In ICASSP (Vol. 3, pp. 369–372).

  9. Elson, J., & Estrin, D. (2001). Time synchronization for wireless sensor networks. In Proceedings 15th international parallel and distributed processing symposium (p. 30186b).

  10. Ganeriwal, S., Kumar, R., & Srivastava Mani, B. (2003). Timing-sync protocol for sensor networks. In Proceedings 1st International Conference embedded networked sensor systems (pp. 138–149).

  11. Alamouti Siavash M. (1998) A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 16(8): 1451–1458

    Article  Google Scholar 

  12. Nguyen, T.-D., Berder, O., & Sentieys, O. (2007). Cooperative MIMO schemes optimal selection for wireless sensor networks. In IEEE 65th VTC (pp. 85–89).

  13. Siam, M. Z., Krunz, M., & Younis, O. (2009). Energy-efficient clustering routing for cooperative MIMO operation in sensor networks. In Proceedings IEEE INFOCOM.

  14. Proakis John G. (2000) Digital communication (4th ed.). McGraw-Hill Science, New York

    Google Scholar 

  15. Nguyen, T.-D., Berder, O., & Sentieys, O. (2008). Efficient space time combination technique for unsynchronized cooperative MISO transmission. In Proceedings IEEE VTC spring.

  16. Simon Marvin K., Alouini M.-S. (2000) Digital communication over fading channels: A unified approach to performance analysis. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  17. IEEE 802.15.4-Wireless Medium Access Control (MAC) and Physical Layer (PHY). (2006). Specifications for low-rate wireless personal area networks (WPANs).

  18. Rajawat K., Chaturvedi A. K. (2006) A low complexity symbol timing estimator for MIMO systems using two samples per symbol. IEEE Communication Letters 10(7): 525–527

    Google Scholar 

  19. Li X., Wu Y.-C., Serpedin E. (2009) Timing synchronization in decode-and-forward cooperative communication systems. IEEE Transactions Signal Processing 57(4): 1444–1455

    Article  MathSciNet  Google Scholar 

  20. Dmochowski P., Mclane P. (2008) Timing error detector design and analysis for orthogonal space-time block code receivers. IEEE Communication Communication 56(11): 1939–1949

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, H., Diouris, JF. & Andrieux, G. Time Synchronization for Cooperative Communication in Wireless Sensor Networks. Wireless Pers Commun 63, 977–993 (2012). https://doi.org/10.1007/s11277-010-0178-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0178-2

Keywords

Navigation