Skip to main content
Log in

Complex-valued ICA utilizing signal-subspace demixing for robust DOA estimation and blind signal separation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper deals with direction of arrival (DOA) estimation and blind signal separation (BSS) based on independent component analysis (ICA) with robust capabilities. An efficient demixing procedure of complex-valued ICA is presented here, which combines the signal-subspace demixing procedure exploiting individual signal-subspace projection and Newton’s iteration algorithm based on maximization of the approximate negentropy of non-Gaussian signal for array signal processing. It resolves the problems of order ambiguity and identifiability of traditional ICA for time-domain BSS. The proposed method could be directly applied to radar, sonar, radio surveillance, and communications systems for separating signals and estimating relative DOAs of signals. Several computer simulation examples for perturbations to the array manifold, unknown noise environments, and Rayleigh fading channel are provided to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calros E., Takada J.I.(2003). ICA based blind source separation applied to radio surveillance. IEICE Transactions on Communications, E86-B(12):3491–3497

    Google Scholar 

  2. Toribio R., Saillard J., Pouliguen P. (2003) Identification of radar targets in resonance zone: E-pulse techniques. Journal of Electromagnetic Waves and Applications 17(12): 1723–1725

    Article  Google Scholar 

  3. Liu H., Xu G. (1996). A subspace method for signature waveform estimation in synchronous CDMA systems. IEEE Transactions on Communications 44(10): 1346–1354

    Article  Google Scholar 

  4. Kayhan A.S., Amin M.G. (2000). Spatial evolutionary spectrum for DOA estimation and blind signal separation. IEEE Transactions on Signal Processing 48(3): 791–798

    Article  Google Scholar 

  5. Swindlehurst A.L., Kailath T. (1992). A performance analysis of subspace-based methods in the presence of model errors—Part I: The MUSIC algorithm. IEEE Transactions Signal Processing 40(7): 1758–1774

    Article  MATH  Google Scholar 

  6. Ziskind I., Wax M. (1988). Maximum likelihood localization of multiple sources by alternating projection. IEEE Transactions on Acoustics, Speech, Signal Processing 36(10): 1553–1560

    Article  MATH  Google Scholar 

  7. Viberg M., Swindlehurst A. L. (1994). Analysis of the combined effects of finite samples and model errors on array processing performance. IEEE Transactions on Signal Processing 42(11): 3073–3083

    Article  Google Scholar 

  8. Jansson M., Swindlehurst A.L., Ottersten B. (1998). Weighted subspace fitting for general array error models. IEEE Transactions on Signal Processing 46(9): 2484–2498

    Article  Google Scholar 

  9. Kangas A., Stoica P., Söderström T. (1994). Finite sample and modeling error effects on ESPRIT and MUSIC direction estimators. IEE Proceedings of Radar, Sonar, Navigation 141(5): 249–255

    Article  Google Scholar 

  10. McCloud M.L., Scharf L.L. (2002). A new subspace identification algorithm for high-resolution DOA estimation. IEEE Transactions on Antennas Propagation 50(10): 1382–1390

    Article  MathSciNet  Google Scholar 

  11. Li J., Compton R.T. (1993). Maximum likelihood angle estimation for signals with known waveforms. IEEE Transactions on Signal Processing, 41(9): 2850–2862

    Article  MATH  Google Scholar 

  12. Miller M.I., Fuhrmann D.R. (1990). Maximum-likelihood narrow-band direction finding and the EM algorithm. IEEE Transactions on Acoustics, Speech, Signal Processing 38(9): 1560–1577

    Article  MATH  Google Scholar 

  13. Hyvärinen A., Oja E. (2000). Independent component analysis: Algorithms and applications. Neural Network, 2000 13(4): 411–430

    Article  Google Scholar 

  14. Bell A.J., Sejnowski T.J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computations 7(6): 1129–1159

    Article  Google Scholar 

  15. Cardos J.F. (1997). Infomax and maximum likelihood for blind source separation. IEEE Signal Processing Letters 4(4): 112–114

    Article  Google Scholar 

  16. Pearlmutter B.A., Parra L.C. (1997). Maximum likelihood blind source separation: A context-sensitive generalization of ICA. Advances in Neural Information Processing Systems 9: 613–619

    Google Scholar 

  17. Hyvärinen A. (1999). The fixed-point algorithm and maximum likelihood estimation for independent component analysis. Neural Processing Letters 10(1): 1–5

    Article  Google Scholar 

  18. Hyvärinen A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Network 10(3): 626–634

    Article  Google Scholar 

  19. Bingham E., Hyvärinen A. (2000). A fast fixed-point algorithm for independent component analysis of complex-valued signals. International Journal of Neural Systems 10(1): 1–8

    Google Scholar 

  20. Hyvärinen A., Oja E. (1997). A fast fixed-Point algorithm for independent component analysis. Neural Computations 9(7): 1483–1492

    Article  Google Scholar 

  21. Saruwatari H., Kawamura T., Nishikawa T., Lee A., Shikano K. (2006). Blind source separation based on a fast-convergence algorithm combining ICA and beamforming. IEEE Transactions on Acoustics, Speech, Signal Processing 14(2): 666–678

    Article  Google Scholar 

  22. Ikram, M. Z., & Morgan, D. R. (2000). A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. In Proceedings of ICASSP, 2000 (pp. 881–884).

  23. Davies M. (2004). Identifiability issues in noisy ICA. IEEE Signal Processing Letters 11(5): 470–473

    Article  Google Scholar 

  24. Ikeda S., Toyama K. (2000). Independent component analysis for noisy data-MEG data analysis. Neural Network 13(10): 1063–1074

    Article  Google Scholar 

  25. Wax M., Kailath T. (1985). Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, Signal Processing 33(2): 387–392

    Article  MathSciNet  Google Scholar 

  26. Yu K.B. (1991). Recursive updating the eigenvalue decomposition of a covariance matrix. IEEE Transactions Signal Processing 39(5): 1136–1145

    Article  Google Scholar 

  27. Zha D., Qiu T. (2006). Underwater sources location in non-Gaussian impulsive noise environments. Digital Signal Processing 16(2): 49–163

    Article  Google Scholar 

  28. Georgiou P.G., Tsakalides P., Kyriakakis C. (1999). Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise. IEEE Transactions on Multimedia 1(3): 291–301

    Article  Google Scholar 

  29. Kuruoglu, E. E. (1998). Signal processing in α-stable noise environments: A least l p norm approach. PHD Thesis, University of Cambridge, UK:Department of Engineering.

  30. Chang A.C., Chiang C.T., Chen Y.H. (2000). An eigenanalysis interference canceler with robust capabilities. Microwave Optical Technology Letters 25(2): 100–103

    Article  Google Scholar 

  31. Torrieri D., Bakhru K. (1997). The effects of nonuniform and correlated noise on superresolution algorithms. IEEE Transactions on Antennas Propagation 45(8): 1214–1218

    Article  Google Scholar 

  32. Zheng Y.R., Xiao C. (2002). Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms. IEEE Communications Letters 6(6): 256–258

    Article  Google Scholar 

  33. Doob J.L. (1960). Stochastic processes, 3rd printing. New York, John Wiley & Sons, Inc.

    Google Scholar 

  34. Gray R.M., Davisson L.D. (1986). Random processes: A mathematical approach for engineers. Englewood Cliffs, New Jersey, Prentice-Hall, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Chen Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, AC., Jen, CW. Complex-valued ICA utilizing signal-subspace demixing for robust DOA estimation and blind signal separation. Wireless Pers Commun 43, 1435–1450 (2007). https://doi.org/10.1007/s11277-007-9317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-007-9317-9

Keywords

Navigation