Skip to main content

Advertisement

Log in

An energy efficient distributed queuing random access (EE-DQRA) MAC protocol for wireless body sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In wireless sensor networks, a significant amount of energy is consumed by the sensor nodes during data packet transmission and reception. An IEEE 802.15.4 MAC protocol is not able to completely satisfy all the requirements of wireless body sensor networks (BSNs) in a healthcare environment. Hence there is a demand for the design of a new scalable and energy saving MAC protocols. In this paper the challenging healthcare requirements are considered and based upon these requirements, an energy efficient distributed queuing random access (EE-DQRA) MAC protocol is proposed for BSN scenarios which utilizes the concept of distributed queuing for enhanced radio channel utilization. The theoretical analysis of energy efficient EE-DQRA MAC protocol is being carried out systematically considering the limitations of IEEE 802.15.4 and DQ-MAC protocol. Further, EE-DQRA performance is validated with IEEE 802.15.4 system parameters using computer simulations. The effect of relative traffic load and payload length on the energy consumption, delay and throughput are also analyzed. The simulation results shows that the proposed EE-DQRA MAC with M/M/K queuing has better energy performance than the existing DQ-MAC and IEEE 802.15.4 MAC in BSN scenarios due to collisionless transmission in the data transmission queuing (DTQ) module while keeping the control packet overhead smaller in collision resolution queuing (CRQ) module. It is also evident that EE-DQRA requires a minimum delay in comparison to IEEE802.15.4 and DQ-MAC, due to overhead minimization and M/M/K queuing utilization in DTQ system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bradai, N., Fourati, L. C., & Kamoun, L. (2014). Investigation and performance analysis of MAC protocols for WBAN networks. Journal of Network and Computer Applications,46, 362–373.

    Article  Google Scholar 

  2. Adhikari, R. (2014). A meticulous study of various medium access control protocols for wireless sensor networks. Journal of Network and Computer Applications,41, 488–504.

    Article  Google Scholar 

  3. Bougard, B., Catthoor, F., Daly, D. C., Chandrakasan, A., & Dehaene, W. (2008). Energy efficiency of the IEEE 802.15. 4 standard in dense wireless microsensor networks: Modeling and improvement perspectives. In Design, automation, and test in Europe (pp. 221).

  4. Otal, B., Alonso, L., & Verikoukis, C. (2010). Design and analysis of an energy-saving distributed MAC mechanism for wireless body sensor networks. EURASIP Journal on Wireless Communications and Networking, 2010(1), 571407.

    Article  Google Scholar 

  5. Maheswar, R., & Jayaparvathy, R. (2011). Performance analysis of cluster based sensor networks using N-policy M/G/1 queueing model. European Journal of Scientific Research,58(2), 177–188.

    Google Scholar 

  6. Mouzehkesh, N., Zia, T., Shafigh, S., & Zheng, L. (2013). D2MAC: Dynamic delayed medium access control (MAC) protocol with fuzzy technique for wireless body area networks. In IEEE international conference on body sensor networks (pp. 1–6).

  7. Cho, K., Jin, Z., & Cho, J. (2014). Design and implementation of a single radio multi-channel MAC protocol on IEEE 802.15. 4 for WBAN. In Proceedings of the 8th international conference on ubiquitous information management and communication (pp. 15). ACM.

  8. Shin, H., Kim, Y., & Lee, S. (2015). A backoff counter reservation scheme for performance improvement in wireless body area networks. In 12th Annual IEEE consumer communications and networking conference (CCNC) (pp. 625–630).

  9. Rasheed, M. B., Javaid, N., Imran, M., Khan, Z. A., Qasim, U., & Vasilakos, A. (2016). Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks. Wireless Networks,23(4), 1249–1266.

    Article  Google Scholar 

  10. Yi, C., Alfa, A. S., & Cai, J. (2016). An incentive-compatible mechanism for transmission scheduling of delay-sensitive medical packets in e-health networks. IEEE Transactions on Mobile Computing,15, 2424–2436.

    Article  Google Scholar 

  11. Jacob, A. K., Kishore, G. M., & Jacob, L. (2017). Lifetime and latency analysis of IEEE 802.15. 6 WBAN with interrupted sleep mechanism. Sādhanā,42, 865–878.

    Article  Google Scholar 

  12. Javaid, N., Ahmad, A., Rahim, A., Khan, Z. A., Ishfaq, M., & Qasim, U. (2014). Adaptive medium access control protocol for wireless body area networks. International Journal of Distributed Sensor Networks,10(3), 254397.

    Article  Google Scholar 

  13. Yuan, X., Li, C., Yang, L., Yue, W., Zhang, B., & Ullah, S. (2016). A token-based dynamic scheduled MAC protocol for health monitoring. EURASIP Journal on Wireless Communications and Networking,1, 125.

    Article  Google Scholar 

  14. Alam, M. M., Hamida, E. B., Berder, O., Menard, D., & Sentieys, O. (2016). A heuristic self-adaptive medium access control for resource-constrained WBAN systems. IEEE Access,4, 1287–1300.

    Article  Google Scholar 

  15. Ali, M. J., Moungla, H., & Mehaoua, A. (2015). Dynamic channel access scheme for interference mitigation in relay-assisted intra-WBANs. In International conference on protocol engineering (ICPE) and international conference on new technologies of distributed systems (NTDS) (pp. 1–6). IEEE.

  16. Zhang, C. Q., Liang, Y. Q., Ni, L. N., Wang, Y. L., & Shu, M. L. (2017). An energy-efficient MAC protocol for wireless body area networks. In ITM web of conferences, EDP sciences (Vol. 12, p. 03044).

  17. Jayarajan, P., Maheswar, R., & Kanagachidambaresan, G. R. (2017). Modified energy minimization scheme using queue threshold based on priority queueing model. Cluster Computing,22(5), 12111–12118.

    Google Scholar 

  18. Nageswari, D., Maheswar, R., & Kanagachidambaresan, G. R. (2018). Performance analysis of cluster based homogeneous sensor network using energy efficient N-policy (EENP) model. Cluster Computing,22(5), 12243–12250.

    Google Scholar 

  19. Yang, X., Wang, L., & Zhang, Z. (2018). Wireless body area networks MAC protocol for energy efficiency and extending lifetime. IEEE Sensors Letters,2(1), 1–4.

    Article  Google Scholar 

  20. Thirumoorthy, P., Kalyanasundaram, P., Maheswar, R., Jayarajan, P., Kanagachidambaresan, G. R., & Amiri, I. S. (2019). Time-critical energy minimization protocol using PQM (TCEM-PQM) for wireless body sensor network. The Journal of Supercomputing,23, 1–11.

    Google Scholar 

  21. Lin, H. J., & Campbell, G. (1993). Using DQRAP (distributed queueing random access protocol) for local wireless communications. In Proceedings of wireless’93.

  22. Alonso, L., Ferrus, R., & Agusti, R. (2005). WLAN throughput improvement via distributed queuing MAC. IEEE Communications Letters,9, 310–312.

    Article  Google Scholar 

  23. Yuan, J., Shan, H., Huang, A., Quek, T. Q., & Yao, Y. D. (2017). Massive machine-to-machine communications in cellular network: Distributed queueing random access meets MIMO. IEEE Access,5, 2981–2993.

    Article  Google Scholar 

  24. Vazquez-Gallego, F., Tuset-Peiró, P., Alonso, L., & Alonso-Zarate, J. (2018). Combining distributed queuing with energy harvesting to enable perpetual distributed data collection applications. Transactions on Emerging Telecommunications Technologies,29(7), e3195.

    Article  Google Scholar 

  25. Campbell, G. M., & Xu, W. (2001). Method and apparatus for detecting collisions on and controlling access to a transmission channel. Illinois Institute of Technology, assignee, United States patent US.

  26. Bolch, G., Greiner, S., et al. (2006). Queueing networks and Markov chains: Modelling and performance evaluation with computer science applications. New York: Wiley.

    Book  Google Scholar 

  27. Chipcon, SmartRF CC2420: 2.4 GHz IEEE802.15.4/Zigbee RF Transceiver, Data Sheet.

  28. Thoen, S., Van der Perre, L., & Engels, M. (2002). Modeling the channel time-variance for fixed wireless communications. IEEE Communications Letters,6, 331–333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Gupta, N. An energy efficient distributed queuing random access (EE-DQRA) MAC protocol for wireless body sensor networks. Wireless Netw 26, 2875–2889 (2020). https://doi.org/10.1007/s11276-019-02244-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02244-8

Keywords

Navigation