Skip to main content
Log in

Traffic big data assisted V2X communications toward smart transportation

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In order to enable smart transportation, an efficient vehicle-to-everything (V2X) communication scheme is required. However, due to the mobility of vehicles and temporal varying features of vehicular environment, it is challenging to design an efficient communication scheme for vehicular networks. In this paper, we first give a review on the recent research efforts for solving communication challenges in vehicular networks, and then propose a traffic Big Data Assisted Communication scheme, BDAC, for vehicular networks. The proposed scheme uses past traffic big data to estimate the vehicle density and velocity, and then uses the prediction results to improve the V2X communications. We implement the proposed scheme in a multi-hop broadcast protocol to show the advantage of the proposed scheme by comparing with other baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu, C., Liu, Z., Zhang, D., Yoshinaga, T., & Ji, Y. (2018). Spatial intelligence towards trustworthy vehicular IoT. IEEE Communications Magazine, 56(10), 22–27.

    Article  Google Scholar 

  2. Wu, J., Zou, L., Zhao, L., Al-Dubai, A., Mackenzie, L., & Min, G. (2019). A multi-UAV clustering strategy for reducing insecure communication range. Computer Networks, 158(10), 132–142.

    Article  Google Scholar 

  3. Wu, C., Yoshinaga, T., Ji, Y., Murase, T., & Zhang, Y. (2017). A reinforcement learning-based data storage scheme for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 66(7), 6336–6348.

    Article  Google Scholar 

  4. Goudarzi, F., & Asgari, H. (2017). Non-cooperative beacon rate and awareness control for VANETs. IEEE Access, 5, 16858–16870.

    Article  Google Scholar 

  5. Lyu, F., Cheng, N., Zhou, H., Xu, W., Shi, W., Chen, J., et al. (2018). DBCC: Leveraging link perception for distributed beacon congestion control in VANETs. IEEE IoT Journal, 6(5), 4237–4249.

    Google Scholar 

  6. Dressler, F., Klingler, F., Sommer, C., & Cohen, R. (2018). Not all VANET broadcasts are the same: context-aware class based broadcast. IEEE/ACM Transactions on Networking, 26(1), 17–30.

    Article  Google Scholar 

  7. Wu, C., Chen, X., Ji, Y., Liu, F., Ohzahata, S., Yoshinaga, T., et al. (2015). Packet size-aware broadcasting in VANETs with fuzzy logic and RL-based parameter adaptation. IEEE Access, 3, 2481–2491.

    Article  Google Scholar 

  8. Wu, C., Ohzahata, S., & Kato, T. (2012). VANET broadcast protocol based on fuzzy logic and lightweight retransmission mechanism. IEICE Transactions on Communications, 95–B(2), 415–425.

    Article  Google Scholar 

  9. Abbasi, H. I., Voicu, R. C., Copeland, J., & Chang, Y. (2019). Towards fast and reliable multi-hop routing in VANETs. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2019.2923230.

    Article  Google Scholar 

  10. Wisitpongphan, N., & Tonguz, K. O. (2007). Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wireless Communications, 14(6), 84–94.

    Article  Google Scholar 

  11. Tahmasbi-Sarvestani, A., Fallah, Y. P., & Kulathumani, V. (2015). Network-aware double-layer distance-dependent broadcast protocol for VANETs. IEEE Transactions on Vehicular Technology, 64(12), 5536–5546.

    Article  Google Scholar 

  12. Shah, S. S., Malik, A. W., Rahman, A. U., Iqbal, S., & Khan, S. U. (2019). Time barrier-based emergency message dissemination in vehicular ad-hoc networks. IEEE Access, 7, 16494–16503.

    Article  Google Scholar 

  13. Jia, K., Hou, Y., Niu, K., Dong, C., & He, Z. (2019). The delay-constraint broadcast combined with resource reservation mechanism and field test in VANET. IEEE Access, 7, 59600–59612.

    Article  Google Scholar 

  14. Kumar, S., Dohare, U., Kumar, K., Prasad, D., Qureshi, K. N., & Kharel, R. (2019). Cybersecurity measures for geocasting in vehicular cyber physical system environments. IEEE IoT Journal. https://doi.org/10.1109/JIOT.2018.2872474.

    Article  Google Scholar 

  15. Li, P., Zhang, T., Huang, C., Chen, X., & Fu, B. (2017). RSU-assisted geocast in vehicular ad hoc networks. IEEE Wireless Communications, 24(1), 53–59.

    Article  Google Scholar 

  16. Zhang, F., Jin, B., Wang, Z., Liu, H., Hu, J., & Zhang, L. (2016). On geocasting over urban bus-based networks by mining trajectories. IEEE Transactions on Intelligent Transportation Systems, 17(6), 1734–1747.

    Article  Google Scholar 

  17. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762.

    Article  Google Scholar 

  18. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. (2019). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3), 4005–4018.

    Article  Google Scholar 

  19. Hassan, N., Yau, K. A., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289.

    Article  Google Scholar 

  20. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.

    Article  Google Scholar 

  21. Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716.

    Article  Google Scholar 

  22. Khattak, H. A., Islam, S. U., Din, I. U., & Guizani, M. (2019). Integrating fog computing with VANETs: A consumer perspective. IEEE Communications Standards Magazine, 3(1), 19–25.

    Article  Google Scholar 

  23. Peng, H., Ye, Q., & Shen, X. S. (2019). SDN-based resource management for autonomous vehicular networks: A multi-access edge computing approach. IEEE Wireless Communications, 26(4), 156–162.

    Article  Google Scholar 

  24. Hu, Q., Wu, C., Zhao, X., Chen, X., Ji, Y., & Yoshinaga, T. (2017). Vehicular multi-access edge computing with licensed sub-6 GHz, IEEE 802.11p and mmWave. IEEE Access, 6, 1995–2004.

    Article  Google Scholar 

  25. Hao, Y., Miao, Y., Hu, L., Hossain, M. S., Muhammad, G., & Amin, S. U. (2019). Smart-Edge-CoCaCo: AI-enabled smart edge with joint computation, caching, and communication in heterogeneous IoT. IEEE Network, 33(2), 58–64.

    Article  Google Scholar 

  26. Wu, C., Chen, X., Yoshinaga, T., Ji, Y., & Zhang, Y. (2019). Integrating licensed and unlicensed spectrum in the internet of vehicles with mobile edge computing. IEEE Network, 33(4), 48–53.

    Article  Google Scholar 

  27. Popescu, D., Jacquet, P., Mans, B., Dumitru, R., Pastrav, A., & Puschita, E. (2019). Information dissemination speed in delay tolerant urban vehicular networks in a hyperfractal setting. IEEE/ACM Transactions on Networking. https://doi.org/10.1109/TNET.2019.2936636.

    Article  Google Scholar 

  28. Cui, J., Cao, S., Chang, Y., Wu, L., Liu, D., & Yang, Y. (2019). An adaptive spray and wait routing algorithm based on quality of node in delay tolerant network. IEEE Access, 7, 35274–35286.

    Article  Google Scholar 

  29. Chen, X., Wu, C., Bennis, M., Zhao, Z., & Han, Z. (2019). Learning to entangle radio resources in vehicular communications: An oblivious game-theoretic perspective. IEEE Transactions on Vehicular Technology, 68(5), 4262–4274.

    Article  Google Scholar 

  30. Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8), 1655–1674.

    Article  Google Scholar 

  31. Dai, Y., Xu, D., Maharjan, S., Qiao, G., & Zhang, Y. (2019). Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Network, 26(3), 12–18.

    Google Scholar 

  32. Liu, G., Xu, Y., He, Z., Rao, Y., Xia, J., & Fan, L. (2019). Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles. IEEE Access, 7, 114487–114495.

    Article  Google Scholar 

  33. Zhou, Z., Yu, H., Xu, C., Zhang, Y., Mumtaz, S., & Rodriguez, J. (2018). Dependable content distribution in D2D-based cooperative vehicular networks: A big data-integrated coalition game approach. IEEE Transactions on Intelligent Transportation Systems, 19(3), 953–964.

    Article  Google Scholar 

  34. Lin, K., Luo, J., Hu, L., Hossain, M. S., & Ghoneim, A. (2017). Localization based on social big data analysis in the vehicular networks. IEEE Transactions on Industrial Informatics, 13(4), 1932–1940.

    Article  Google Scholar 

  35. Cheng, N., Lyu, F., Chen, J., Xu, W., Zhou, H., Zhang, S., et al. (2018). Big data driven vehicular networks. IEEE Network, 32(6), 160–167.

    Article  Google Scholar 

  36. Caltrans performance measurement system (PeMS). Reterived June 20, 2019 from http://pems.dot.ca.gov/.

  37. Bai, S., et al. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271.

  38. Wang, Y., & Tian, F. (2016). Recurrent residual learning for sequence classification. In EMNLP (pp. 938–943).

  39. Guleng, S., Wu, C., Yoshinaga, T., & Ji, Y. (2019). Traffic big data assisted broadcast in vehicular networks. In Proceedings of ACM RACS, 5 pages.

  40. The Network Simulator-ns-2. Retrieved June 23, 2019 from http://www.isi.edu/nsnam/ns/.

  41. Khan, A., Sadhu, S., & Yeleswarapu, M. (2009). A comparative analysis of DSRC and 802.11 over vehicular ad hoc networks. Project Report, University of California, Santa Barbara (pp. 1–8).

  42. Bai, F., Sadagopan, N., & Helmy, A. (2003). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In 22nd Annual joint conference of the IEEE computer and communications societies, San Francisco, USA (pp. 825–835).

  43. Krajzewicz, D., Hertkorn, G., Rossel, C., & Wagner, P. (2002). SUMO (simulation of urban mobility): An open-source traffic simulation. In Proceedings of 4th middle east Symposium on simulation and modelling (MESM2002) (pp. 183–187). SCS European Publishing House.

Download references

Acknowledgements

This research was supported in part by JSPS KAKENHI Grant Nos. 18KK0279, 19H04093, JST-Mirai Program Grant No. JPMJMI17B3, and the Telecommunications Advanced Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celimuge Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, C., Wu, C. Traffic big data assisted V2X communications toward smart transportation. Wireless Netw 26, 1601–1610 (2020). https://doi.org/10.1007/s11276-019-02181-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02181-6

Keywords

Navigation