Skip to main content
Log in

Performance analysis of maximal ratio transmission with receiver antenna selection over correlated Nakagami-m fading channels

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we develop a framework to analyze the performance analysis of multi-antenna system that employ maximal-ratio transmission with receive antenna selection (MRT/RAS) over correlated Nakagami-m fading channels. We derive the probability density function (pdf) of the post processing signal-to-noise ratio at the output of the decoder, when spatial fading correlation is assumed. Utilizing the pdf, a closed-form analytical expression is derived in terms of channel capacity, outage probability and symbol error rate (SER) of M-ary modulation schemes. It can be observed that the performance loss in terms of capacity and SER is negligible when the separation between adjacent antennas is as large as 0.5 for exponential correlation model. Numerical outcomes considering the spatial correlation represent the performance characteristics and analyze their impacts on channel capacity, outage probability and SER of MRT/RAS system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications,10, 585–595.

    Article  MathSciNet  Google Scholar 

  2. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Communications,6, 311–355.

    Article  Google Scholar 

  3. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communication. IEEE Journal Selected Areas in Communications,16(8), 1451–1458.

    Article  Google Scholar 

  4. Gore, D. A., & Paulraj, A. (2002). MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing,50(10), 2580–2588.

    Article  Google Scholar 

  5. Molisch, A. F., Win, M. Z., Choi, Y. S., & Winters, J. H. (2005). Capacity of MIMO system with antenna selection. IEEE Transactions on Wireless Communications,4(4), 1759–1772.

    Article  Google Scholar 

  6. Zeng, X. N., & Ghrayeb, A. (2004). Performance bounds for space-time block codes with receive antenna selection. IEEE Transactions on Information Theory,50, 2130–2137.

    Article  MathSciNet  Google Scholar 

  7. Chen, Z., Yuan, J., & Vucetic, B. (2005). Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels. IEEE Transactions on Vehicular Technology,54(4), 1312–1321.

    Article  Google Scholar 

  8. Chen, Z., Chi, Z., Li, Y., & Vucetic, B. (2009). Error performance of maximal-ratio combining with transmit antenna selection in flat Nakagami-m fading channels. IEEE Transactions on Wireless Communications,8(1), 424–431.

    Article  Google Scholar 

  9. Wang, B. Y., & Zheng, W. X. (2009). BER performance of transmitter antenna selection/receiver-MRC over arbitrarily correlated fading channels. IEEE Transactions on Vehicular Technology,58(6), 3088–3092.

    Article  Google Scholar 

  10. Ramya, T. R., & Bhashyam, S. (2009). Using delayed feedback for antenna selection in MIMO systems. IEEE Transactions on Wireless Communications,8(12), 6059–6067.

    Article  Google Scholar 

  11. Rui, X. (2012). Analysis of MIMO MRT/SC system. Wireless Personal Communications,62(1), 117–126.

    Article  Google Scholar 

  12. Coskun, A. F., & Kucur, O. (2012). Performance analysis maximal-ratio transmission/receive antenna selection in Nakagami-m fading channels with channel estimation errors and feedback delay. IEEE Transactions on Vehicular Technology,61(3), 1099–1108.

    Article  Google Scholar 

  13. Luo, L., Zeidler, J. R., & McLaughlin, S. (2001). Performance analysis of compact antenna arrays with MRC in correlated Nakagami fading channels. IEEE Transactions on Vehicular Technology,50(1), 267–277.

    Article  Google Scholar 

  14. Chauhan, S. S., & Kumar, S. (2014). Capacity analysis of adaptive transmission with space-time block codes in spatially correlated MIMO Nakagami-m fading channels. Wireless Personal Communication,79(2), 1211–1222.

    Article  Google Scholar 

  15. Proakis, J. G. (2000). Digital communication (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  16. David, H. A. (1970). Order statistics. New York: Wiley.

    MATH  Google Scholar 

  17. Alouini, M. S., & Goldsmith, A. J. (1999). Capacity of Rayleigh Fading channels under different adaptive transmission and diversity combining technique. IEEE Transactions on Vehicular Technology,48(4), 1165–1181.

    Article  Google Scholar 

  18. Simon, M. K., & Alouini, M. S. (2000). Digital communication over fading channels: A unified approach to performance analysis. New York: Wiley.

    Book  Google Scholar 

  19. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). San Diego, CA: Academic.

    MATH  Google Scholar 

  20. Cho, K., & Yoon, D. (2002). On the general BER expression of one-and two-dimensional amplitude modulations. IEEE Transactions on Communications,50, 1074–1080.

    Article  Google Scholar 

  21. Lu, J., Letaief, K. B., Chuang, J. C. I., et al. (1999). M-PSK and M-QAM BER computation using signal-space concepts. IEEE Transactions on Communications,47(2), 181–184.

    Article  Google Scholar 

  22. Loskot, P., & Beaulieu, N. C. (2009). Prony and polynomial approximations for evaluation of the average probability of error over slow-fading channels. IEEE Transactions on Vehicular Technology,58(3), 1269–1280.

    Article  Google Scholar 

  23. Lombardo, P., Fedele, G., & Rao, M. M. (1999). MRC performance for binary signals in Nakagami fading with general branch correlation. IEEE Transactions on Communications,47(1), 44–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudakar Singh Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$ \begin{aligned} C & \le C_{Bound} \\ & = log_{2} \left[ {1 + \mathop \int \limits_{0}^{\infty } \gamma p_{\gamma } \left( \gamma \right)d\gamma } \right] \\ \end{aligned} $$
(31)

Inserting (12) into (31), the upper bound capacity can be written as

$$ \begin{aligned} C & = log_{2} \left[ {1 + \mathop \sum \limits_{\sigma = 1}^{N} \mathop \sum \limits_{\tau = 1}^{{m\mu_{\sigma } }} \mathop \sum \limits_{v = 0}^{{N_{r} - 1}} \mathop \sum \limits_{{\left\{ {\delta_{n,p,c} } \right\} \in {\mathbb{U}}_{v} }} \left( {\begin{array}{*{20}c} {N_{r} } \\ {\left\{ {\delta_{n,p,c} } \right\}} \\ \end{array} } \right)\frac{{\xi_{\sigma \tau } h\left( {\left\{ {\delta_{n,p,c} } \right\}} \right)}}{{\left( { - 1} \right)^{v} \Gamma \left( \tau \right)}}} \right. \\ & \quad \left. { \times \mathop \int \limits_{0}^{\infty } \frac{{\gamma^{{\left[ {\tau + f\left( {\left\{ {\delta_{n,p,c} } \right\}} \right) + 1} \right] - 1}} e^{{ - \gamma \left( {g\left( {\left\{ {\delta_{n,p,c} } \right\}} \right) + \frac{m}{{\bar{\gamma }\lambda_{v} }}} \right)}} }}{{\left( {\frac{{\bar{\gamma }\lambda_{v} }}{m}} \right)^{\tau } \Gamma \left( {N_{r} - v} \right)}}d\gamma } \right] \\ \end{aligned} $$
(32)

By utilizing the identity [19] \( \int_{0}^{\infty } {x^{v - 1} } e^{ - \mu x} dx = \mu^{ - v} \Gamma \left( v \right) \), the upper bound capacity can be obtained in (19).

Appendix 2

Inserting (12) and (28) into (24)

$$ \begin{aligned} & P_{M\_PSK}^{MRT} \left( s \right) = \mathop \sum \limits_{z = 1}^{2} \mathop \sum \limits_{v = 1}^{{max\left( {M/4,1} \right)}} \mathop \sum \limits_{\sigma = 1}^{N} \mathop \sum \limits_{\tau = 1}^{{m\mu_{\sigma } }} \mathop \sum \limits_{v = 0}^{{N_{r} - 1}} \mathop \sum \limits_{{\left\{ {\delta_{n,p,c} } \right\} \in {\mathbb{U}}_{v} }} \left( {\begin{array}{*{20}c} {N_{r} } \\ {\left\{ {\delta_{n,p,c} } \right\}} \\ \end{array} } \right)\frac{{a_{z} \xi_{\sigma \tau } }}{{\left( { - 1} \right)^{v} \Gamma \left( \tau \right)}}\frac{{\left( {\frac{m}{{\bar{\gamma }\lambda_{v} }}} \right)^{\tau } h\left( {\left\{ {\delta_{n,p,c} } \right\}} \right)}}{{2max\left( {log_{2} M,2} \right)}} \\ & \quad \times \mathop \int \limits_{0}^{\infty } \gamma^{{\tau + f\left( {\left\{ {\delta_{n,p,c} } \right\}} \right) - 1}} e^{{ - \gamma \left( {g\left( {\left\{ {\delta_{n,p,c} } \right\}} \right) + \frac{m}{{\bar{\gamma }\lambda_{v} }} + b_{z} D_{v} } \right)}} d\gamma \\ \end{aligned} $$
(33)

Utilizing the identity [19] \( \int_{0}^{\infty } {x^{v - 1} } e^{ - \mu x} dx = \frac{1}{{\mu^{v} }}\Gamma \left( v \right) \), we can achieve approximate closed-form expression of average SER of MRT/RAS with MPSK in (29).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S.S., Kumar, S. Performance analysis of maximal ratio transmission with receiver antenna selection over correlated Nakagami-m fading channels. Wireless Netw 26, 751–758 (2020). https://doi.org/10.1007/s11276-019-02179-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02179-0

Keywords

Navigation