Skip to main content

Advertisement

Log in

Traffic-aware auto-configuration protocol for service oriented low-power and lossy networks in IoT

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Many diversified services can be offered by smart objects, referred to herein by nodes, in low-power and lossy networks (LLNs) contributing to the Internet of Things (IoT). A distributed naming and registration system, complying with the Internet protocol standard, is needed for unique identification of these nodes and their provided services in many areas such as monitoring and remote control. Due to the high expected number of IoT nodes, manual configuration is not practical, and an efficient auto-configuration mechanism is essential. Although the multicast domain name system (mDNS) is the most common distributed naming protocol nowadays, it is not optimized for constrained LLN nodes in IoT. This work proposes enhanced mDNS (E-mDNS) which augments mDNS with three proposed enhancements: the persistent-based selection stage, the simultaneous start-up enhancement, and the announcement suppression mechanism. Using the Cooja emulation platform, we evaluate both the mDNS and E-mDNS for a wide range of conditions and network sizes, and produce a large array of performance figures that includes number of control packets, energy consumption for CPU and radio transmissions, memory footprint, and others. Through the evaluation of the fairness index for a wide range of number of nodes, we demonstrate that E-mDNS provides better load balancing for the collection of nodes in the network relative to mDNS. Furthermore, results indicate that while E-mDNS produces a memory footprint in RAM that is only 4.2% more than that for mDNS, E-mDNS manages to significantly reduce the number of control packets by an average of 34.8% for the considered range of network size. Accordingly, the corresponding reduction in energy consumption for radio transmissions and CPU is 46.7% and 47.5%, respectively. The evaluation shows that these reductions are greater for larger number of nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., et al. (2011). Service-oriented middleware for the future internet: State of the art and research directions. Journal of Internet Services and Applications, 2(1), 23.

    Article  Google Scholar 

  2. Teixeira T., Hachem S., Issarny V., & Georgantas N. (2011). Service Oriented Middleware for the Internet of Things: A Perspective. In W. Abramowicz, I. M. Llorente, M. Surridge, A. Zisman, & J. Vayssière (Eds.), Towards a Service-Based Internet. ServiceWave 2011. Lecture Notes in Computer Science (Vol. 6994). Berlin, Heidelberg: Springer.

  3. Issarny V., Bouloukakis G., Georgantas N., & Billet B. (2016). Revisiting service-oriented architecture for the IoT: A middleware perspective. In Q. Sheng, E. Stroulia, S. Tata, & S. Bhiri (Eds.), Service-Oriented Computing. ICSOC 2016. Lecture Notes in Computer Science (Vol. 9936). Cham: Springer.

  4. Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., & Savio, D. (2010). Interacting with the soa-based internet of things: Discovery, query, selection, and on-demand provisioning of web services. IEEE Transactions on Services Computing, 3(3), 223.

    Article  Google Scholar 

  5. Amoretti, M., Alphand, O., Ferrari, G., Rousseau, F., & Duda, A. (2017). DINAS: A lightweight and efficient distributed naming service for ALL-IP wireless sensor networks. IEEE Internet of Things Journal, 4(3), 670.

    Article  Google Scholar 

  6. Kata, K., Nakayama, Y., & Seki, T. (2010). M2M service platform to support carrier cloud. NEC Technical Journal, 5(2), 116.

    Google Scholar 

  7. Schor, L., Sommer, P., & Wattenhofer, R. (2009). Towards a zero-configuration wireless sensor network architecture for smart buildings. In Proceedings of the first ACM workshop on embedded sensing systems for energy-efficiency in buildings, BuildSys ’09 (pp. 31–36). New York, NY: ACM.

  8. Djamaa, B., Richardson, M., Aouf, N., & Walters, B. (2014). Towards efficient distributed service discovery in low-power and lossy networks. Wireless Networks, 20(8), 2437.

    Article  Google Scholar 

  9. Sanshi, S., & Jaidhar, C. D. (2017). Enhanced mobility aware routing protocol for low power and lossy networks. Wireless Networks, 25, 1641–1655.

    Article  Google Scholar 

  10. Abdul-Ghani, H. A., Konstantas, D., & Mahyoub, M. (2018). A comprehensive IoT attacks survey based on a building-blocked reference model. In International Journal of Advanced Computer Science and Applications(IJACSA), 9(3).

  11. Hussen, H. R., Teja, C. R., Miao, T., Kim, K., & Kim, K. H. (2016). Traffic-aware cooperative binary exponential backoff algorithm for low power and lossy networks. Wireless Personal Communications, 86(4), 1913.

    Article  Google Scholar 

  12. Sarkar, C., Nambi, S. N. A. U., Prasad, R. V., Rahim, A., Neisse, R., & Baldini, G. (2015). DIAT: A scalable distributed architecture for IoT. IEEE Internet of Things Journal, 2(3), 230.

    Article  Google Scholar 

  13. Cheshire, S.,  Krochmal, M. (2013). Multicast DNS, IETF RFC 6762.

  14. Cirani, S., Davoli, L., Ferrari, G., Léone, R., Medagliani, P., Picone, M., et al. (2014). A scalable and self-configuring architecture for service discovery in the internet of things. IEEE Internet of Things Journal, 1(5), 508.

    Article  Google Scholar 

  15. Ishaq, I., Hoebeke, J., Rossey, J., De Poorter, E., Moerman, I., & Demeester, P. (2012). Facilitating sensor deployment, discovery and resource access using embedded web services. In 2012 Sixth international conference on innovative mobile and internet services in ubiquitous computing (pp. 717–724).

  16. Carballido Villaverde, B., Alberola, R. D. P., Jara, A. J., Fedor, S., Das, S. K., & Pesch, D. (2014). Service discovery protocols for constrained machine-to-machine communications. IEEE Communications Surveys Tutorials, 16(1), 41.

    Article  Google Scholar 

  17. Jara, A. J., Varakliotis, S., Skarmeta, A. F., & Kirstein, P. (2014). Extending the internet of things to the future internet through IPv6 support. Mobile Information Systems, 10(1), 3.

    Article  Google Scholar 

  18. Ismail, A., & Kastner, W. (2016). Discovery in SOA-governed industrial middleware with mDNS and DNS-SD. In 2016 IEEE 21st international conference on emerging technologies and factory automation (ETFA) (pp. 1–8).

  19. Cheshire, S. (2017). Hybrid unicast/multicast DNS-based service discovery, IETF draft.

  20. Klauck, R. (2016). Seamless integration of smart objects into the internet using XMPP and mDNS/DNS-SD. Ph.D. thesis, Universität Cottbus-Senftenberg.

  21. Buchina, N. (2014). Extending service discovery protocols with support for context information. Ph.D. thesis, Eindhoven University of Technology.

  22. Srinivasan, S. (2016). Improving content delivery and service discovery in networks. Ph.D. thesis, Columbia University.

  23. Jara, A.J., Martinez-Julia, P., & Skarmeta, A. (2012). Light-weight multicast DNS and DNS-SD (lmDNS-SD): IPv6-based resource and service discovery for the web of things. In 2012 Sixth international conference on innovative mobile and internet services in ubiquitous computing (pp. 731–738).

  24. Antonini, M., Cirani, S., Ferrari, G., Medagliani, P., Picone, M., & Veltri, L. (2014). Lightweight multicast forwarding for service discovery in low-power IoT networks. In 2014 22nd International conference on software, telecommunications and computer networks (SoftCOM) (pp. 133–138).

  25. Siljanovski, A., Sehgal, A., & Schönwälder, J. (2014). Service discovery in resource constrained networks using multicast DNS. In 2014 European conference on networks and communications (EuCNC) (pp. 1–5).

  26. Kaiser, D., & Waldvogel, M. (2014). Efficient privacy preserving multicast DNS service discovery. In 2014 IEEE international conference on high performance computing and communications, 2014 IEEE 6th international symposium on cyberspace safety and security, 2014 IEEE 11th international conference on embedded software and system (HPCC, CSS, ICESS) (pp. 1229–1236).

  27. Kerry, L., & Don, S. (2013). Extended multicast DNS, internet-draft.

  28. Klauck R., & Kirsche M. (2012). Bonjour Contiki: A Case Study of a DNS-Based Discovery Service for the Internet of Things. In X. Y. Li, S. Papavassiliou, & S. Ruehrup (Eds.), Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2012. Lecture Notes in Computer Science (Vol. 7363). Berlin, Heidelberg: Springer.

  29. Lee, K., Kim, S., Jeong, J. P., Lee, S., Kim, H., & Park, J. S. (2019). A framework for DNS naming services for internet-of-things devices. Future Generation Computer Systems, 92, 617.

    Article  Google Scholar 

  30. Siddiqui, F., Zeadally, S., Kacem, T., & Fowler, S. (2012). Zero configuration networking: Implementation, performance, and security. Computers and Electrical Engineering, 38(5), 1129. (Special issue on Recent Advances in Security and Privacy in Distributed Communications and Image processing).

    Article  Google Scholar 

  31. Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki - a lightweight and flexible operating system for tiny networked sensors. In 29th Annual IEEE international conference on local computer networks (pp. 455–462).

  32. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-Level Sensor Network Simulation with COOJA. In Proceedings. 2006 31st IEEE conference on local computer networks (pp. 641–648).

  33. Cheshire, S., & Krochmal, M. (2013). DNS-based service discovery, RFC 6763.

  34. Kaindl, G. Bonjour/Zeroconf with Arduino. https://developer.apple.com/bonjour/. Accessed July 2019.

  35. Klauck, R., & Kirsche, M. (2013). Enhanced DNS message compression - Optimizing mDNS/DNS-SD for the use in 6LoWPANs. In 2013 IEEE international conference on pervasive computing and communications workshops (PERCOM Workshops) (pp. 596–601).

  36. Stolikj, M., Cuijpers, P. J. L., Lukkien, J. J., & Buchina, N. (2016). Context based service discovery in unmanaged networks using mDNS/DNS-SD. In 2016 IEEE international conference on consumer electronics (ICCE) (pp. 163–165).

  37. Stolikj, M., Verhoeven, R., Cuijpers, P. J. L., & Lukkien, J. J. (2014). Proxy support for service discovery using mDNS/DNS-SD in low power networks. In Proceeding of IEEE international symposium on a world of wireless, mobile and multimedia networks 2014 (pp. 1–6).

  38. Shelby, Z. (2012). Constrained RESTful Environments (CoRE) Link Format, RFC 6690.

  39. Thomson, S., Narten, T., & Jinmei, T. (2007). IPv6 stateless address autoconfiguration, RFC 2462.

  40. Mahyoub, M., Mahmoud, A., & Sheltami, T. (2017). An optimized discovery mechanism for smart objects in IoT. In 2017 8th IEEE annual information technology, electronics and mobile communication conference (IEMCON) (pp. 649–655).

  41. Al-Kashoash, H. A. A., Kharrufa, H., Al-Nidawi, Y., & Kemp, A. H. (2018). Congestion control in wireless sensor and 6LoWPAN networks: Toward the internet of things. Wireless Networks, 1572-8196.

  42. Kharrufa, H., Al-Kashoash, H., & Kemp, A. H. (2018). A game theoretic optimization of RPL for mobile internet of things applications. IEEE Sensors Journal, 18(6), 2520.

    Article  Google Scholar 

  43. Lorente, G. G., Lemmens, B., Carlier, M., Braeken, A., & Steenhaut, K. (2017). BMRF: Bidirectional multicast RPL forwarding. Ad Hoc Networks, 54, 69.

    Article  Google Scholar 

  44. Zhao, M., Ho, I. W., & Chong, P. H. J. (2016). An energy-efficient region-based RPL routing protocol for low-power and lossy networks. IEEE Internet of Things Journal, 3(6), 1319.

    Article  Google Scholar 

  45. Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537.

    Article  Google Scholar 

  46. Dunkels, A. (2011). The contikimac radio duty cycling protocol. Available: http://dunkels.com/adam/dunkels11contikimac.pdf.

  47. Dunkels, A., Osterlind, F., Tsiftes, N., & He, Z. (2007). Software-based On-line Energy Estimation for Sensor Nodes. In Proceedings of the 4th workshop on embedded networked sensors, EmNets ’07 (pp. 28–32). New York, NY: ACM.

  48. Instrument, T. MSP430F543x and MSP430F541x mixed-signal microcontrollers. Available at: http://www.ti.com/lit/ds/symlink/msp430f5437.pdf. Accessed July 2019.

  49. Davoli, L., Antonini, M., & Ferrari, G. (2018). DIRPL: A RPL-based resource and service discovery algorithm for 6LoWPANS. Applied Sciences, 9(1), 33.

    Article  Google Scholar 

  50. Djiroun, F. Z., & Djenouri, D. (2017). MAC protocols with wake-up radio for wireless sensor networks: A review. IEEE Communications Surveys Tutorials, 19(1), 587.

    Article  Google Scholar 

  51. Jain, R. (1990). The art of computer systems performance analysis: Techniques for experimental design, measurement, simulation, and modeling. SIGMETRICS Performance Evaluation Review.

  52. Hui, J., & Kelsey, R. (2016) Multicast protocol for low-power and lossy networks (MPL), RFC 7731, Internet Engineering Task Force (IETF).

  53. Levis, P., Patel, N., Culler, D., & Shenker, S. (2004). Trickle: A self-regulating algorithm for code maintenance and propagation in wireless sensor networks. In Proceedings of the USENIX NSDI Conference (pp. 15–28). San Francisco, CA, USA.

  54. Winter, T. et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks, IETF RFC 6550.

Download references

Acknowledgements

The authors would like to acknowledge the support provided by King Fahd University of Petroleum and Minerals (KFUPM) and the department of computer engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mahyoub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A., Mahyoub, M., Sheltami, T. et al. Traffic-aware auto-configuration protocol for service oriented low-power and lossy networks in IoT. Wireless Netw 25, 4231–4246 (2019). https://doi.org/10.1007/s11276-019-02086-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02086-4

Keywords

Navigation