Skip to main content
Log in

Hybrid routing scheme using imperialist competitive algorithm and RBF neural networks for VANETs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular ad hoc network (VANET), a special type of mobile ad-hoc networks (MANETs), is characterized by a very high mobility. Due to the dynamic nature of vehicle nodes and unstable wireless links, the design of an efficient and effective routing scheme is serious challenging for VANETs. Thus, proposing a reliable routing protocol for important data dissemination is essential for VANETs. In this paper, a clustering-based routing protocol is introduced where nodes are clustered according to movement information such as node degree and velocity of vehicles by means of imperialist competitive algorithm. Then, the cluster head is selected by means of radial basis function neural network algorithm according to amount of free buffer space and expected transmission count. Simulation results indicated that the proposed scheme improves the other related algorithms in terms of the parameters of packet delivery rate, throughput and end-to-end delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ghaffari, A. (2017). Real-time routing algorithm for mobile ad hoc networks using reinforcement learning and heuristic algorithms. Wireless Networks, 23, 703–714.

    Article  Google Scholar 

  2. Yu, F., Li, Y., Fang, F., & Chen, Q. (2007). A new TORA-based energy aware routing protocol in mobile ad hoc networks. In 2007 3rd IEEE/IFIP international conference in central Asia on internet (pp. 1–4).

  3. Li, Y., Wang, Z., Cao, B., & Huang, W. (2011). Impact of spectrum allocation on connectivity of cognitive radio ad-hoc networks. In 2011 IEEE global telecommunications conference-GLOBECOM 2011 (pp. 1–5).

  4. Li, Y., Zhang, R., Cao, B., You, X., & Daneshmand, A. (2011). A distributed cooperative MAC for cognitive radio ad-hoc networks. In 2011 IEEE symposium on computers and communications (ISCC) (pp. 1038–1043).

  5. Liu, Z., Zhou, Y., Li, Y., & Chen, Q. (2008). Capacity of multi-path routing in wireless ad hoc networks. In 2008 4th international conference on wireless communications, networking and mobile computing (pp. 1–4).

  6. Li, Y., Song, S., & Daneshmand, M. (2016). A store-and-forward cooperative MAC for wireless ad hoc networks. Mobile Networks and Applications, 21, 1024–1031.

    Article  Google Scholar 

  7. Zhanjun, L., Rui, W., Qilie, L., Yun, L., Qianbin, C., & Ping, W. (2009). An energy-constrained routing protocol for mobile ad hoc networks. In 2009 international conference on communication software and networks (pp. 504–507)

  8. Cunha, F., Villas, L., Boukerche, A., Maia, G., Viana, A., Mini, R. A., et al. (2016). Data communication in VANETs: Protocols, applications and challenges. Ad Hoc Networks, 44, 90–103.

    Article  Google Scholar 

  9. Dua, A., Kumar, N., & Bawa, S. (2014). A systematic review on routing protocols for vehicular ad hoc networks. Vehicular Communications, 1, 33–52.

    Article  Google Scholar 

  10. Ghebleh, R. (2018). A comparative classification of information dissemination approaches in vehicular ad hoc networks from distinctive viewpoints: A survey. Computer Networks, 131, 15–37.

    Article  Google Scholar 

  11. Memon, I., & Arain, Q. A. (2017). Dynamic path privacy protection framework for continuous query service over road networks. World Wide Web, 20, 639–672.

    Article  Google Scholar 

  12. Memon, I., Ali, Q., Zubedi, A., & Mangi, F. A. (2017). DPMM: dynamic pseudonym-based multiple mix-zones generation for mobile traveler. Multimedia Tools and Applications, 76, 24359–24388.

    Article  Google Scholar 

  13. Arain, Q. A., Deng, Z., Memon, I., Zubedi, A., & Mangi, F. A. (2017). Location privacy with dynamic pseudonym-based multiple mix-zones generation over road networks. Wireless Personal Communications, 97, 3645–3671.

    Article  Google Scholar 

  14. Hasan, M. K., Ismail, A. F., Islam, S., Hashim, W., Ahmed, M. M., & Memon, I. (2019). A novel HGBBDSA-CTI approach for subcarrier allocation in heterogeneous network. Telecommunication Systems, 70, 245–262.

    Article  Google Scholar 

  15. Li, G., Boukhatem, L., & Wu, J. (2017). Adaptive quality-of-service-based routing for vehicular ad hoc networks with ant colony optimization. IEEE Transactions on Vehicular Technology, 66, 3249–3264.

    Article  Google Scholar 

  16. Khan, S., Alam, M., Fränzle, M., Müllner, N., & Chen, Y. (2018). A traffic aware segment-based routing protocol for VANETs in urban scenarios. Computers & Electrical Engineering, 68, 447–462.

    Article  Google Scholar 

  17. Saleh, A. I., Gamel, S. A., & Abo-Al-Ez, K. M. (2017). A reliable routing protocol for vehicular ad hoc networks. Computers & Electrical Engineering, 64, 473–495.

    Article  Google Scholar 

  18. Cooper, C., Franklin, D., Ros, M., Safaei, F., & Abolhasan, M. (2017). A comparative survey of VANET clustering techniques. IEEE Communications Surveys & Tutorials, 19, 657–681.

    Article  Google Scholar 

  19. Fahad, M., Aadil, F., Khan, S., Shah, P. A., Muhammad, K., Lloret, J., et al. (2018). Grey wolf optimization based clustering algorithm for vehicular ad-hoc networks. Computers & Electrical Engineering, 70, 853–870.

    Article  Google Scholar 

  20. Arain, Q. A., Uqaili, M. A., Deng, Z., Memon, I., Jiao, J., Shaikh, M. A., et al. (2017). Clustering based energy efficient and communication protocol for multiple mix-zones over road networks. Wireless Personal Communications, 95, 411–428.

    Article  Google Scholar 

  21. Ishtiaq, A., Ahmed, S., Khan, M. F., Aadil, F., Maqsood, M., & Khan, S. (2019). Intelligent clustering using moth flame optimizer for vehicular ad hoc networks. International Journal of Distributed Sensor Networks, 15, 1550147718824460.

    Article  Google Scholar 

  22. Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine, 2, 12–22.

    Article  Google Scholar 

  23. Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2014). Vehicular communication ad hoc routing protocols: A survey. Journal of network and computer applications, 40, 363–396.

    Article  Google Scholar 

  24. Liu, J., Wan, J., Wang, Q., Deng, P., Zhou, K., & Qiao, Y. (2016). A survey on position-based routing for vehicular ad hoc networks. Telecommunication Systems, 62, 15–30.

    Article  Google Scholar 

  25. Benamar, N., Singh, K. D., Benamar, M., El Ouadghiri, D., & Bonnin, J.-M. (2014). Routing protocols in vehicular delay tolerant networks: A comprehensive survey. Computer Communications, 48, 141–158.

    Article  Google Scholar 

  26. Kumar, S., & Verma, A. K. (2015). Position based routing protocols in VANET: A survey. Wireless Personal Communications, 83, 2747–2772.

    Article  Google Scholar 

  27. Awang, A., Husain, K., Kamel, N., & Aïssa, S. (2017). Routing in vehicular ad-hoc networks: A survey on single-and cross-layer design techniques, and perspectives. IEEE Access, 5, 9497–9517.

    Article  Google Scholar 

  28. Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20–31.

    Article  Google Scholar 

  29. Mohammed Nasr, M. M., Abdelgader, A. M. S., Wang, Z.-G., & Shen, L.-F. (2016). VANET clustering based routing protocol suitable for deserts. Sensors, 16, 478.

    Article  Google Scholar 

  30. Lin, D., Kang, J., Squicciarini, A., Wu, Y., Gurung, S., & Tonguz, O. (2017). MoZo: A moving zone based routing protocol using pure V2 V communication in VANETs. IEEE Transactions on Mobile Computing, 16, 1357–1370.

    Article  Google Scholar 

  31. Fekair, M. E. A., Lakas, A., & Korichi, A. (2016). CBQoS-vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET. In 2016 international conference on selected topics in mobile & wireless networking (MoWNeT) (pp. 1–8).

  32. Moridi, E., & Barati, H. (2017). RMRPTS: A reliable multi-level routing protocol with tabu search in VANET. Telecommunication Systems, 65, 127–137.

    Article  Google Scholar 

  33. Bagherlou, H., & Ghaffari, A. (2018). A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks. The Journal of Supercomputing, 74(6), 2528–2552.

    Article  Google Scholar 

  34. Wang, S.-S., & Lin, Y.-S. (2013). PassCAR: A passive clustering aided routing protocol for vehicular ad hoc networks. Computer Communications, 36, 170–179.

    Article  Google Scholar 

  35. Abbas, F., & Fan, P. (2018). Clustering-based reliable low-latency routing scheme using ACO method for vehicular networks. Vehicular Communications, 12, 66–74.

    Article  Google Scholar 

  36. Liu, L., Chen, C., Qiu, T., Zhang, M., Li, S., & Zhou, B. (2018). A data dissemination scheme based on clustering and probabilistic broadcasting in VANETs. Vehicular Communications, 13, 78–88.

    Article  Google Scholar 

  37. Khan, Z., Fan, P., Abbas, F., Chen, H., & Fang, S. (2019). Two-level cluster based routing scheme for 5G V2X communication. IEEE Access, 7, 16194–16205

    Google Scholar 

  38. Wu, C., Yoshinaga, T., Ji, Y., & Zhang, Y. (2018). Computational intelligence inspired data delivery for vehicle-to-roadside communications. IEEE Transactions on Vehicular Technology, 67, 12038–12048.

    Article  Google Scholar 

  39. Zhang, X., Yan, L., & Li, W. (2016). Efficient and reliable abiding geocast based on carrier sets for vehicular ad hoc networks. IEEE Wireless Communications Letters, 5, 660–663.

    Article  Google Scholar 

  40. Zhang, X., Cao, X., Yan, L., & Sung, D. K. (2016). A street-centric opportunistic routing protocol based on link correlation for urban vanets. IEEE Transactions on Mobile Computing, 15, 1586–1599.

    Article  Google Scholar 

  41. Abuashour, A., & Kadoch, M. (2018). Control overhead reduction in cluster-based VANET routing protocol. In Y. Zhou & T. Kunz (Eds.), Ad hoc networks (pp. 106–115). Berlin: Springer.

    Chapter  Google Scholar 

  42. Luo, Y., Zhang, W., & Hu, Y. (2010). A new cluster based routing protocol for VANET. In 2010 second international conference on networks security, wireless communications and trusted computing (pp. 176–180).

  43. Su, H., & Zhang, X. (2007). Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 56, 3309–3323.

    Article  Google Scholar 

  44. Memon, I. (2018). Distance and clustering-based energy-efficient pseudonyms changing strategy over road network. International Journal of Communication Systems, 31, e3704.

    Article  Google Scholar 

  45. Wu, C., Ohzahata, S., & Kato, T. (2013). Flexible, portable, and practicable solution for routing in VANETs: a fuzzy constraint Q-learning approach. IEEE Transactions on Vehicular Technology, 62, 4251–4263.

    Article  Google Scholar 

  46. Wu, J., Fang, M., & Li, X. (2018). Reinforcement learning based mobility adaptive routing for vehicular ad-hoc networks. Wireless Personal Communications, 101, 2143–2171.

    Article  Google Scholar 

  47. Atashpaz-Gargari, E. & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In IEEE Congress on Evolutionary computation, 2007. CEC 2007 (pp. 4661–4667).

  48. Qasem, S. N., & Shamsuddin, S. M. (2011). Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis. Applied Soft Computing, 11, 1427–1438.

    Article  Google Scholar 

  49. De Couto, D. S., Aguayo, D., Bicket, J., & Morris, R. (2005). A high-throughput path metric for multi-hop wireless routing. Wireless Networks, 11, 419–434.

    Article  Google Scholar 

  50. Wahab, O. A., Otrok, H., & Mourad, A. (2013). VANET QoS-OLSR: QoS-based clustering protocol for vehicular ad hoc networks. Computer Communications, 36, 1422–1435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghaffari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadnezhad, M., Ghaffari, A. Hybrid routing scheme using imperialist competitive algorithm and RBF neural networks for VANETs. Wireless Netw 25, 2831–2849 (2019). https://doi.org/10.1007/s11276-019-01997-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-01997-6

Keywords

Navigation