Skip to main content
Log in

Secure wireless multicasting through AF-cooperative networks with best-relay selection over generalized fading channels

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We consider a secure wireless multicasting scenario over Generalized \(\kappa -\mu\) fading channels via multiple amplify-and-forward cooperative relays. In the first hop, a source S transmits a common stream of information to a group of K relays. In the second hop, the best relay which has the highest signal-to-noise ratio, forwards the amplified version of information to a group of M destination users in the presence of multiple eavesdroppers. We assume that there is no direct link between source and destination users as well as eavesdroppers. Destinations and eavesdroppers are communicating with the source via relays only. The key contribution of this paper is to enhance the security of wireless multicasting using the additional diversity provided by the best relay of K relays. In order to investigate the performance of the proposed model, we derive the analytical expressions for the probability of non-zero secrecy multicast capacity and the secure outage probability in terms of the number of relays, destination users and eavesdroppers. Finally, the analytical expressions are verified via Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khalil, M. I., Berber, S. M., & Sowerby, K. W. (2017). Bit error rate performance analysis in amplify-and-forward relay networks. Wireless Networks, 23, 947–957.

    Article  Google Scholar 

  2. Amin, O., Mesleh, R., Ikki, S. S., Ahmed, M. H., & Dobre, O. A. (2014). Performance analysis of multiple relays cooperative systems with signal space diversity. IEEE Transactions on Vehicular Technology, 64(8), 3414–3425.

    Article  Google Scholar 

  3. Chu, S., Wang, X., & Yang, Y. (2012). Exploiting cooperative relay for high performance communications in MIMO ad hoc networks. IEEE Transactions on Computers, 62(4), 716–729.

    MathSciNet  MATH  Google Scholar 

  4. Moharrer, H., Olfat, A., & Beaulieu, N. C. (2015). Cooperative beamforming for two-hop multi-relay decode-and-forward networks. IEEE Transactions on Communications, 63(9), 3143–3156.

    Article  Google Scholar 

  5. Vashistha, A., Sharma, S., & Bohara, V. A. (2015). Outage analysis of a multiple antenna cognitive radio system with cooperative decode-and-forward relaying. IEEE Communications Letters, 4(2), 125–128.

    Article  Google Scholar 

  6. Majhi, S., & Banarjee, A. (2015). Asymptotic outage analysis of incremental decode and forward cognitive radio relay network. In Proceedings of IEEE 7th international conference on communication systems and networks (COMSNETS 2015).

  7. Duong, T. Q., Bao, V. N. Q., & Zepernick, H.-J. (2009). On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels. IEEE Communications Letters, 13(3), 172–174.

    Article  Google Scholar 

  8. Darsena, D., Gelli, G., Melito, F., & Verde, F. (2014). Performance analysis of amplify-and-forward multiple-relay MIMO systems with ZF reception. IEEE Transactions on Vehicular Technology, 64(7), 3274–3280.

    Article  Google Scholar 

  9. Han, J.-S., Baek, J.-S., Jeon, S., & Seo, J.-S. (2014). Cooperative networks with amplify-and-forward multiple-full-duplex relays. IEEE Transactions on Wireless Communications, 13(4), 2137–2149.

    Article  Google Scholar 

  10. Som, P., & Chokalingam, A. (2014).Decode-and-forward cooperative multicast with space shift keying. In Proceedings of IEEE wireless communication and networking conference (WCNC2014).

  11. Lim, S. H., Kim, K. T., & Kim, Y.-H. (2014). Distributed decode-forward for multicast. In Proceedings of IEEE international symposium on information theory (ISIT 2014) (pp. 636–640).

  12. Chattha, J., & Uppal, M. (2016). Layered multiplexed-coded relaying in wireless multicast using QAM transmissions. IEEE Communications Letters, 20(4), 760–763.

    Article  Google Scholar 

  13. Lei, H., Dai, Z., Park, K.-H., Lei, W., Pan,G., & Alouini, M.-S. (2018). Secrecy outage analysis of mixed RF-FSO downlink SWIPT systems. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2018.2865944

    Article  Google Scholar 

  14. Bassily, R., & Ulukas, S. (2012). Secure communication in multiple relay networks through decode-and-forward strategies. Journal of Communications and Networks, 14(4), 352–363.

    Article  Google Scholar 

  15. Zhu, J., Zou, Y., Champagne, B., Zhu, W.-P., & Hanzo, L. (2016). Security-reliability tradeoff analysis of multirelay-aided decode-and-forward cooperation systems. IEEE Transactions on Vehicular Technology, 65(7), 5825–5831.

    Article  Google Scholar 

  16. Wang, D., Bai, B., Chen, W., & Han, Z. (2015). Energy efficient secure communication over decode-and-forward relay channels. IEEE Transactions on Communications, 63(3), 892–905.

    Article  Google Scholar 

  17. Liu, Y., Wang, L., Duy, T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communications Letters, 4(1), 46–49.

    Article  Google Scholar 

  18. Sun, L., Ren, P., Du, Q., Wang, Y., & Gao, Z. (2015). Security-aware relaying scheme for cooperative networks with untrusted relay nodes. IEEE Communications Letters, 19(3), 463–466.

    Article  Google Scholar 

  19. Zhang, J., & Pan, G. (2017). Secrecy outage analysis with Kth best relay selection in dual-hop inter-vehicle communication systems. International Journal of Electronics and Communications (AEU), 71, 139–144.

    Article  Google Scholar 

  20. Wang, X., Tao, M., & Xu, Y. (2014). Outage analysis of cooperative secrecy multicast transmission. IEEE Wireless Communications Letters, 3(2), 161–164.

    Article  Google Scholar 

  21. Zou, Y., Zhu, J., Li, X., & Hanzo, L. (2016). Relay selection for wireless communications against eavesdropping: A security-reliability tradeoff perspective. IEEE Networks, 30(5), 74–79.

    Article  Google Scholar 

  22. Lei, H., Zhang, H., Ansari, I. S., Ren, Z., Pan, G., Qaraqe, K. A., et al. (2017). On secrecy outage of relay selection in underlay cognitive radio networks over Nakagami-m fading channels. IEEE Transactions on Cognitive Communications and Networking, 3(4), 614–627.

    Article  Google Scholar 

  23. Sarker, D. K., Sarkar, M. Z. I., & Anower, M. S. (2017). Secure wireless multicasting with linear equalization. Physical Communication, 25(1), 201–213.

    Article  Google Scholar 

  24. Wayner, A. D. (1975). The wire-tap channel. Bell Systems Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  Google Scholar 

  25. Bloch, M., Barros, J., Rodrigues, M., & McLaughlin, S. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.

    Article  MathSciNet  Google Scholar 

  26. Mavoungou, S., Kaddoum, G., Taha, M., & Matar, G. (2016). Survey on threats and attacks on mobile networks. IEEE Access, 4, 4543–4572.

    Article  Google Scholar 

  27. Shannon, C. E. (1949). Communication theory of secrecy systems. Bell System Technical Journal, 28, 656–715.

    Article  MathSciNet  Google Scholar 

  28. Fragkiadakis, A., Tragos, E., & Askoxylakis, I. (2013). A survey on security threats and detection techniques in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(1), 428–445.

    Article  Google Scholar 

  29. Yacoub, M. D. (2001). The \(\kappa -\mu\) distribution: A general fading distribution. In Proceedings of IEEE 54th Vehicular Technology Conference (VTC 2001) (pp. 1427–1431).

  30. Krikidis, I., Thompson, J. S., McLaughlin, S., & Goertz, N. (2009). Max-min relay selection for legacy amplify-and-forward systems with interference. IEEE Transactions on Wireless Communications, 8(6), 3016–3027.

    Article  Google Scholar 

  31. Ambramowitz, M., & Stegum, A. (1970). Handbook of mathematical functions with formulas, Graphs and mathematical tables (9th ed.). New York: Dover Press.

    Google Scholar 

  32. Nagendra, K., & Vimal, B. (2015). Performance analysis of amplify-and-forward cooperative networks with best-relay selection over Weibull fading channels. Wireless Personal Communications, 85, 641–653.

    Article  Google Scholar 

  33. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). San Diego: Academic Press.

    MATH  Google Scholar 

  34. Fedele, G. (1996). N-branch diversity reception of M-ary DPSK signals in slow and nonselective Nakagami fading. European Transactions on Telecommunication, 7, 119–123.

    Article  Google Scholar 

  35. Khisti, A., & Zhang, D. (2013). Artificial-noise alignment for secure multicast using multiple antennas. IEEE Communications Letters, 17(8), 1568–1571.

    Article  Google Scholar 

  36. Sarkar, M. Z. I. & Ratnarajah, T. (2011). Secure wireless multicasting through Nakagami-m fading MISO channel. In Proceedings of IEEE 45th Asilomar conference on signals, systems and computers (ASILOMAR 2011) (pp. 300–304).

  37. Sarkar, M. Z. I., & Ratnarajah, T. (2012). Enhancing security in correlated channel with maximal ratio combining diversity. IEEE Transactions on Signal Processing, 60(12), 6745–6751.

    Article  MathSciNet  Google Scholar 

  38. Sarkar, M. Z. I. & Ratnarajah, T. (2010). Information-theoretic security in wireless multicasting. In Proceedings of IEEE 6th international conference on electrical and computer engineering (ICECE 2010) (pp. 53–56).

  39. Wang, P., Yu, G., & Zhang, Z. (2007). On the secrecy capacity of fading wireless channel with multiple eavesdroppers. In Proceedings of IEEE international symposium on information theory (ISIT 2007) (pp. 1301–1305).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Sarker.

Appendices

Appendix 1

This appendix evaluates the integral, \(I_{1}\) as shown below:

$$\begin{aligned} I_{1}&\triangleq \int _{0}^{\gamma _{i}}\mathcal {D}_{2}\left( \Upsilon \beta _{j}^{\rho }e^{-\chi _{2}\beta _{j}^{2}} -\phi _{2}\beta _{j}^{\vartheta }e^{-\chi _{2}\beta _{j}^{2}}\right) d\beta _{j}. \end{aligned}$$
(55)

Performing integration using Eq. (36) and the following identity

$$\begin{aligned} \gamma \left( n,x\right)&= \left[ \varGamma \left( n\right) -\varGamma \left( n,x\right) \right] , \end{aligned}$$

we obtain

$$\begin{aligned} I_{1}&\triangleq \mathcal {D}_{2}\Biggl [\Upsilon \frac{\chi _{2}^{-\frac{(1+\rho )}{2}}}{2}\Biggl \{\varGamma \left( \frac{1+\rho }{2}\right) -\varGamma \left( \frac{1+\rho }{2},\chi _{2}\gamma _{i}^{2}\right) \Biggl \}\nonumber \\&\quad -\phi {2}\frac{\chi _{2}^{-\frac{(1+\vartheta )}{2}}}{2}\Biggl \{\varGamma \left( \frac{1+\vartheta }{2}\right) -\varGamma \left( \frac{1+\vartheta }{2},\chi _{2}\gamma _{i}^{2}\right) \Biggl \}\Biggl ]\nonumber \\&=\mathcal {D}_{2}\Biggl [\Upsilon \frac{\chi _{2}^{-\frac{(1+\rho )}{2}}}{2}\Biggl \{\varGamma \left( \frac{1+\rho }{2}\right) -\left( \frac{\rho -1}{2}\right) !\sum _{a_{1}=0}^{\frac{\rho -1}{2}}\frac{\chi _{2}^{a_{1}}}{a_{1}!}\gamma _{i}^{2a_{1}}e^{-\chi _{2}\gamma _{i}^{2}}\Biggl \}\nonumber \\&\quad -\phi _{2}\frac{\chi _{2}^{-\frac{(1+\vartheta )}{2}}}{2}\Biggl \{\varGamma \left( \frac{1+\vartheta }{2}\right) -\left( \frac{\vartheta -1}{2}\right) !\sum _{a_{2}=0}^{\frac{\vartheta -1}{2}}\frac{\chi _{2}^{a_{2}}}{a_{2}!} \gamma _{i}^{2a_{2}}e^{-\chi _{2}\gamma _{i}^{2}}\Biggl \}\Biggl ]\nonumber \\&=\mathcal {D}_{2}\left[ \mathcal {G}_{1}-\mathcal {G}_{2}\gamma _{i}^{2a_{1}}e^{-\chi _{2}\gamma _{i}^{2}} +\mathcal {G}_{3}\gamma _{i}^{2a_{2}}e^{-\chi _{2}\gamma _{i}^{2}}\right] , \end{aligned}$$
(56)

where

$$\begin{aligned}&\mathcal {G}_{1}=\Upsilon \frac{\chi _{2}^{-\frac{(1+\rho )}{2}}}{2}\varGamma \left( \frac{1+\rho }{2}\right) -\phi _{2}\frac{\chi _{2}^{-\frac{(1+\vartheta )}{2}}}{2}\varGamma \left( \frac{1+\vartheta }{2}\right) ,\\&\mathcal {G}_{2}=\Upsilon \frac{\chi _{2}^{-\frac{(1+\rho )}{2}}}{2}\left( \frac{\rho -1}{2}\right) ! \sum _{a_{1}=0}^{\frac{\rho -1}{2}}\frac{\chi _{2}^{a_{1}}}{a_{1}!}, \mathcal {G}_{3}=\phi _{2}\frac{\chi _{2}^{-\frac{(1+\vartheta )}{2}}}{2} \left( \frac{\vartheta -1}{2}\right) !\sum _{a_{2}=0}^{\frac{\vartheta -1}{2}}\frac{\chi _{2}^{a_{2}}}{a_{2}!}. \end{aligned}$$

Appendix 2

In this appendix, we provide evaluation of the integrals, \(I_{2}\) to \(I_{7}\) as follows:

$$\begin{aligned} I_{2}&\triangleq \int _{L}^{\infty }\varPi _{1}\gamma _{i}^{\varrho _{1}} e^{-\alpha _{1}\gamma _{i}^{2}}d\gamma _{i}. \end{aligned}$$
(57)

Using Eqs. (16) and (17), we have

$$\begin{aligned} I_{2}&\triangleq \int _{L}^{\infty }\varPi _{1}\gamma _{i}^{\varrho _{1}} e^{-\alpha _{1}\gamma _{i}^{2}}d\gamma _{i}=\frac{1}{2}\alpha _{1}^{-\frac{(\varrho _{1}+1)}{2}}\varGamma \left( \frac{\varrho _{1}+1}{2},\alpha _{1} L^{2}\right) \nonumber \\&=\frac{\varPi _{1}}{2}\alpha _{1}^{-\frac{(\varrho _{1}+1)}{2}}\left( \frac{\varrho _{1}-1}{2}!\right) \sum _{\delta _{1}}^{\frac{\varrho _{1}-1}{2}} \frac{\alpha _{1}^{\delta _{1}}}{\delta _{1}!}L^{2\delta _{1}}e^{-\alpha _{1}L^{2}}. \end{aligned}$$
(58)

Substituting the value of L, we obtain

$$\begin{aligned} I_{2}&\triangleq \frac{\varPi _{1}}{2}\alpha _{1}^{-\frac{(\varrho _{1}+1)}{2}}\left( \frac{\varrho _{1}-1}{2}!\right) \sum _{\delta _{1}}^{\frac{\varrho _{1}-1}{2}} \frac{\alpha _{1}^{\delta _{1}}}{\delta _{1}!}\sum _{\mu _{1}=0}^{2\delta _{1}}\left( ^{2\delta _{1}}_{\mu _{1}}\right) (-1)^{2\delta _{1}-\mu _{1}} \sum _{\sigma _{1}=0}^{\mu _{1}}\left( ^{\mu _{1}}_{\sigma _{1}}\right) \nonumber \\&\quad \times e^{\mu _{1}R_{s}-\alpha _{1}(e^{2R_{s}}-2e^{R_{s}}+1)}\beta _{j}^{\sigma _{1}}e^{-2\alpha _{1}(e^{2R_{s}}+e^{R_{s}})\beta _{j}-\alpha _{1}e^{2R_{s}}\beta _{j}^{2}}\nonumber \\&=\mathcal {F}_{1}\beta _{j}^{\sigma _{1}}e^{-r_{1}\beta _{j}-q_{1}\beta _{j}^{2}}, \end{aligned}$$
(59)

where

$$\begin{aligned}&\mathcal {F}_{1}=\frac{\varPi _{1}}{2}\alpha _{1}^{-\frac{(\varrho _{1}+1)}{2}}\left( \frac{\varrho _{1}-1}{2}!\right) \sum _{\delta _{1}}^{\frac{\varrho _{1}-1}{2}} \frac{\alpha _{1}^{\delta _{1}}}{\delta _{1}!}\sum _{\mu _{1}=0}^{2\delta _{1}}\left( ^{2\delta _{1}}_{\mu _{1}}\right) (-1)^{2\delta _{1}-\mu _{1}} \sum _{\sigma _{1}=0}^{\mu _{1}}\left( ^{\mu _{1}}_{\sigma _{1}}\right) \\&\quad \times e^{\mu _{1}R_{s}-\alpha _{1}(e^{2R_{s}}-2e^{R_{s}}+1)}, r_{1}=2\alpha _{1}(e^{2R_{s}}+e^{R_{s}}), q_{1}=\alpha _{1}e^{2R_{s}}. \end{aligned}$$

Similar to Eq. (59), we obtain

$$\begin{aligned}&I_{3}\triangleq \mathcal {F}_{2}\beta _{j}^{\sigma _{2}}e^{-r_{2}\beta _{j}-q_{2}\beta _{j}^{2}}, I_{4}\triangleq \mathcal {F}_{3}\beta _{j}^{\sigma _{3}}e^{-r_{3}\beta _{j}-q_{3}\beta _{j}^{2}},\\&I_{5}\triangleq \mathcal {F}_{4}\beta _{j}^{\sigma _{4}}e^{-r_{4}\beta _{j}-q_{4}\beta _{j}^{2}}, I_{6}\triangleq \mathcal {F}_{5}\beta _{j}^{\sigma _{5}}e^{-r_{5}\beta _{j}-q_{5}\beta _{j}^{2}}, I_{7}\triangleq \mathcal {F}_{6}\beta _{j}^{\sigma _{6}}e^{-r_{6}\beta _{j}-q_{6}\beta _{j}^{2}}, \end{aligned}$$

where

$$\begin{aligned}&\mathcal {F}_{2}=\frac{\varPi _{2}}{2}\alpha _{2}^{-\frac{(\varrho _{2}+1)}{2}}\left( \frac{\varrho _{2}-1}{2}!\right) \sum _{\delta _{2}}^{\frac{\varrho _{2}-1}{2}} \frac{\alpha _{2}^{\delta _{2}}}{\delta _{2}!}\sum _{\mu _{2}=0}^{2\delta _{2}}\left( ^{2\delta _{2}}_{\mu _{2}}\right) (-1)^{2\delta _{2}-\mu _{2}} \sum _{\sigma _{2}=0}^{\mu _{2}}\left( ^{\mu _{2}}_{\sigma _{2}}\right) \\&\quad \times e^{\mu _{2}R_{s}-\alpha _{2}(e^{2R_{s}}-2e^{R_{s}}+1)}, r_{2}=2\alpha _{2}(e^{2R_{s}}+e^{R_{s}}), q_{2}=\alpha _{2}e^{2R_{s}},\\&\mathcal {F}_{3}=\frac{\varPi _{3}}{2}\alpha _{3}^{-\frac{(\varrho _{3}+1)}{2}}\left( \frac{\varrho _{3}-1}{2}!\right) \sum _{\delta _{3}}^{\frac{\varrho _{3}-1}{2}} \frac{\alpha _{3}^{\delta _{3}}}{\delta _{3}!}\sum _{\mu _{3}=0}^{2\delta _{3}}\left( ^{2\delta _{3}}_{\mu _{3}}\right) (-1)^{2\delta _{3}-\mu _{3}} \sum _{\sigma _{3}=0}^{\mu _{3}}\left( ^{\mu _{3}}_{\sigma _{3}}\right) \\&\quad \times e^{\mu _{3}R_{s}-\alpha _{3}(e^{2R_{s}}-2e^{R_{s}}+1)}, r_{3}=2\alpha _{3}(e^{2R_{s}}+e^{R_{s}}), q_{3}=\alpha _{3}e^{2R_{s}},\\&\mathcal {F}_{4}=\frac{\varPi _{4}}{2}\alpha _{4}^{-\frac{(\varrho _{4}+1)}{2}}\left( \frac{\varrho _{4}-1}{2}!\right) \sum _{\delta _{4}}^{\frac{\varrho _{4}-1}{2}} \frac{\alpha _{4}^{\delta _{4}}}{\delta _{4}!}\sum _{\mu _{4}=0}^{2\delta _{4}}\left( ^{2\delta _{4}}_{\mu _{4}}\right) (-1)^{2\delta _{4}-\mu _{4}} \sum _{\sigma _{4}=0}^{\mu _{4}}\left( ^{\mu _{4}}_{\sigma _{4}}\right) \\&\quad \times e^{\mu _{4}R_{s}-\alpha _{4}(e^{2R_{s}}-2e^{R_{s}}+1)}, r_{4}=2\alpha _{4}(e^{2R_{s}}+e^{R_{s}}), q_{4}=\alpha _{4}e^{2R_{s}},\\&\mathcal {F}_{5}=\frac{\varPi _{5}}{2}\alpha _{5}^{-\frac{(\varrho _{5}+1)}{2}}\left( \frac{\varrho _{5}-1}{2}!\right) \sum _{\delta _{5}}^{\frac{\varrho _{5}-1}{2}} \frac{\alpha _{5}^{\delta _{5}}}{\delta _{5}!}\sum _{\mu _{5}=0}^{2\delta _{5}}\left( ^{2\delta _{5}}_{\mu _{5}}\right) (-1)^{2\delta _{5}-\mu _{5}} \sum _{\sigma _{5}=0}^{\mu _{5}}\left( ^{\mu _{5}}_{\sigma _{5}}\right) \\&\quad \times e^{\mu _{5}R_{s}-\alpha _{5}(e^{2R_{s}}-2e^{R_{s}}+1)}, r_{5}=2\alpha _{5}(e^{2R_{s}}+e^{R_{s}}), q_{5}=\alpha _{5}e^{2R_{s}},\\&\mathcal {F}_{6}=\frac{\varPi _{6}}{2}\alpha _{6}^{-\frac{(\varrho _{6}+1)}{2}}\left( \frac{\varrho _{6}-1}{2}!\right) \sum _{\delta _{6}}^{\frac{\varrho _{6}-1}{2}} \frac{\alpha _{6}^{\delta _{6}}}{\delta _{6}!}\sum _{\mu _{6}=0}^{2\delta _{6}}\left( ^{2\delta _{6}}_{\mu _{6}}\right) (-1)^{2\delta _{6}-\mu _{6}} \sum _{\sigma _{6}=0}^{\mu _{6}}\left( ^{\mu _{6}}_{\sigma _{6}}\right) \\&\quad \times e^{\mu _{6}R_{s}-\alpha _{6}(e^{2R_{s}}-2e^{R_{s}}+1)}, r_{6}=2\alpha _{6}(e^{2R_{s}}+e^{R_{s}}), q_{6}=\alpha _{6}e^{2R_{s}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, D.K., Sarkar, M.Z.I. & Anower, M.S. Secure wireless multicasting through AF-cooperative networks with best-relay selection over generalized fading channels. Wireless Netw 26, 1717–1730 (2020). https://doi.org/10.1007/s11276-018-1861-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1861-6

Keywords

Navigation