Skip to main content
Log in

Low-complexity uplink scheduling algorithms with power control in successive interference cancellation based wireless mud-logging systems

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless mud-logging systems have been employed in petroleum exploration to guarantee efficiency and safety in well-drilling. For the wireless networks in well-drillings, the tradeoff between throughput and fairness has great relation to the type of wells. The throughput is of the most importance to deep wells, while fairness is of primary concern for shallow wells. In this study, this challenge is addressed by using 2-SIC (successive interference cancellation) techniques. The throughput maximization and the fairness maximization problems are further formulated based on an imperfect 2-SIC model, which differentiates our work from existing ones. In view of the hardness of these problems, a low-complexity approximation algorithm for maximizing throughput and a low-complexity heuristic algorithm for maximizing fairness are proposed. To evaluate the proposed schemes, extensive simulations are performed. According to simulation results, the throughput performance could be improved by 23% using our approximation algorithm of throughput maximization, while the Jain’s fairness index could reach 0.975 using our algorithm of fairness optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. \(p_{max}\)  can be regarded as the maximal allowable transmit power under the energy budget instead of the maximal transmit power which is bounded by the hardware. It can be set dynamically.

  2. Decoding priority can be random if \({G_i}{p_i}={G_j}{p_j}\).

  3. The lemma can be generalized to the throughput maximization problem with more than two transmitters. The conclusion coincides with [8], where perfect SIC is considered.

References

  1. Han, G., Jiang, J., Zhang, C., Duong, T. Q., Guizani, M., & Karagiannidis, G. (2016). A survey on mobile anchors assisted localization in wireless sensor networks. IEEE Communications Surveys Tutorials, 18(3), 2220–2243.

    Article  Google Scholar 

  2. Xie, R., Liu, A., & Gao, J. (2016). A residual energy aware schedule scheme for WSNs employing adjustable awake/sleep duty cycle. Wireless Personal Communications, 90(4), 1859–1887.

    Article  Google Scholar 

  3. Zhang, X. C., & Haenggi, M. (2014). The performance of successive interference cancellation in random wireless networks. IEEE Transactions on Information Theory, 60(10), 6368–6388.

    Article  MathSciNet  MATH  Google Scholar 

  4. Karipidis, E., Yuan, D., He, Q., & Larssonv, E. G. (2015). Max–min power allocation in wireless networks with successive interference cancellation. IEEE Tranactions on Wireless Communications, 14(11), 6269–6282.

    Article  Google Scholar 

  5. Yuan, D., Vangelis, A., Lei, C., Eleftherios, K., & Larsson, G. E. (2013). On optimal link activation with interference cancellation in wireless networking. IEEE Transactions on Vehicular Technology, 62(2), 939–945.

    Article  Google Scholar 

  6. Zhiguo, D., Pingzhi, F., & Poor, H. V. (2016). Impact of user pairing on 5g nonorthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6010–6023.

    Article  Google Scholar 

  7. Zheng, Y., Zhiguo, D., Pingzhi, F., & Dhahir, N. A. (2016). A general power allocation scheme to guarantee quality of service in downlink and uplink noma systems. IEEE Transactions on Wireless Communications, 15(11), 7244–7257.

    Article  Google Scholar 

  8. Lei, L., Yuan, D., Chin, K. H., & Sumei, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5g systems: Tractability and computation. IEEE Transactions on Wireless Communications, 15(12), 8580–8594.

    Article  Google Scholar 

  9. Xu, C., Li, P., & Ci, S. (2013). Decentralized power allocation for random access with successive interference cancellation. IEEE Journal on Selected Area in Communications, 31(11), 2387–2396.

    Article  Google Scholar 

  10. Mollanoori, M., & Ghaderi, M. (2014). Uplink scheduling in wireless networks with successive interference cancellation. IEEE Transactions on Mobile Computing, 13(5), 1132–1144.

    Article  Google Scholar 

  11. Sung, C. W. & Fu, Y. (2016). A game-theoretic analysis of uplink power control for a non-orthogonal multiple access system with two interfering cells. In Proceedings of the 83rd IEEE vehicular technology conference (VTC Spring) (pp. 1–5), May 2016, Nanjing, China. IEEE.

  12. Agrawal, A. (2003). Power control for space-time multiuser CDMA. PhD thesis, Stanford University.

  13. Green, D. B., & Obaidat, A. S. (2002). An accurate line of sight propagation performance model for ad hoc 802.11 wireless LAN (WLAN) devices. In Proceedings of the IEEE international conference on communications (pp. 3424–3428), New York, USA, April 2002. IEEE.

  14. Oliveto, P. S., He, J., & Xiao, X. (2007). Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results. International Journal of Automation and Computing, 4(3), 281–293.

    Article  Google Scholar 

  15. Jiang, C., Shi, Y., Hou, Y. T., Lou, W., Kompella, S., & Midkiff, S. F. (2012). Squeezing the most out of interference: An optimization framework for joint interference exploitation and avoidance. In Proceedings of the 31th IEEE InfoCom (pp. 424–432), Orlando, USA, March 2012. IEEE.

  16. Karipidis, E., Yuan, D., He, Q., & Larsson, E. G. (2015). Max–min power control in wireless networks with successive interference cancellation. IEEE Transactions on Wireless Communication, 14(11), 6269–6282.

    Article  Google Scholar 

  17. Yu, Y., Huang, S., Wang, J., & Ou, J. (2015). Design of wireless logging instrument system for monitoring oil drilling platform. IEEE Sensors Journal, 15(6), 3453–3458.

    Article  Google Scholar 

  18. Collotta, M., Gentile, L., Pau G., & Scat, G. (2012). A dynamic algorithm to improve industrial wireless sensor networks management. In Proceedings of 38th annual conference of the IEEE Industrial Electronics Society (pp. 2802–2807), Montreal, Canada, October 2012. IEEE.

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61173132), Science Foundation of China University of Petroleum, Beijing (ZX20150089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaonong Xu.

Appendices

Appendix 1: Proving Theorem 1

Lemma 5

If\((p_i^*,p_j^*)\)is the optimal solution of PCMT-TN, then\(p_i^*=p_{max}\)or\(p_j^*=p_{max}\).

Proof

Assume there is a feasible solution \(({p_i'},{p_j'})\). If \({p_i'}\ge {p_j'}\), \((k{p_i'},k{p_j'})\) is still feasible for all \(0<k \le \frac{p_{max}}{p_i'}\). Besides, \(Th_{i,j}(k{p_i'},k{p_j'})\) is an increasing function of k. So, the optimal solution satisfies \(p_i^*=p_{max}\). Similarly, If \({p_i'}<{p_j'}\), the optimal solution satisfies \(p_j^*=p_{max}\).\(\square\)

Proof of Theorem 1

Case 1 Assume \(p_j^*=p_{max}\)

In this case, PCMT-TN problem is actually

$$\begin{aligned} \mathop {\max }\limits _{{p_i}} T{h_{i,j}}\left( {{p_i},{p_{\max }}} \right) \quad s.t.\quad {G_i}{p_i} \ge {G_j}{p_{\max }}\quad 0 \le {p_i} \le {p_{\max }} . \end{aligned}$$

It can be known that

$$\begin{aligned} \frac{{dT{h_{i,j}}\left( {{p_i},{p_{\max }}} \right) }}{{d{p_i}}} &=\frac{{{\varepsilon ^2}{G_i}^3{p_i}^2 + 2\varepsilon {G_i}^2{N_0}{p_i} + {N_0}^2{G_i}}}{{\left( {{G_j}{p_{\max }} + {N_0}} \right) {{(\varepsilon {G_i}{p_i} + {N_0})}^2}}}\\&\quad+ \frac{{\left( {1 - \varepsilon } \right) {G_i}{G_j}{N_0}{p_{\max }} - \varepsilon {G_i}{G_j}^2{p_{\max }}^2}}{{\left( {{G_j}{p_{\max }} + {N_0}} \right) {{(\varepsilon {G_i}{p_i} + {N_0})}^2}}}. \end{aligned}$$

Since \({\frac{{dTh_{i,j}({p_i,p_{max}})}}{dp_i}} > 0\)  for all \({p_i} \ge \frac{{{G_j}{p_{\max }}}}{{{G_i}}}\). \(T{h_{i,j}}\left( {{p_i},{p_{\max }}} \right)\) will increase with increasing \(p_i\) if \({p_i} \ge \frac{{{G_j}{p_{\max }}}}{{{G_i}}}\). Thus, the maximum is achieved when \(p_i=p_{max}\), and the maximum throughput is \(T{h_{i,j}}\left( {{p_{\max }},{p_{\max }}} \right)\).

In conclusion, under Cases 1, the solution is always \((p_{max},p_{max})\).

Case 2 Assume \(p_j^*<p_{max}\)

In this case, \(p_i^*=p_{max}\), thus, PCMT-TN problem is

$$\begin{aligned} {\mathop {\max }\limits _{{p_j}} T{h_{i,j}}\left( {{p_{\max }},{p_j}} \right) \quad s.t. \quad 0 \le {p_j} < {p_{\max }}}. \end{aligned}$$

In Case 2, we further divide the problem into two subcases, i.e., Cases 2.1 and 2.2.

Case 2.1  \(\sqrt{\varepsilon }{G_i}{p_{\max }} - {N_0} \le 0\). Since

$$\begin{aligned}&\frac{{dT{h_{i,j}}\left( {{p_{\max }},{p_j}} \right) }}{{d{p_j}}}= \frac{{{G_j}({{({G_j}{p_j} + {N_0})}^2} - \varepsilon {G_i}^2{p_{\max }}^2)}}{{\left( {\varepsilon {G_i}{p_{\max }} + {N_0}} \right) {{({G_j}{p_j} + {N_0})}^2}}} , \end{aligned}$$

it can be seen that \(\frac{dTh_{i,j} (p_{max},p_j)}{dp_j} \ge 0\) for any \(p_j \in [0,p_{max})\). Therefore, the optimal solution in this case is \((p_{max},p_{max}-\delta )\), where \(\delta\) is a sufficiently small positive number.

Since the optimal solution in Case 1 is \((p_{max},p_{max})\), the optimal solution is \((p_{max},p_{max})\) if \(\sqrt{\varepsilon }{G_i}{p_{\max }} - {N_0} \le 0\).

Case 2.2  \(\sqrt{\varepsilon }{G_i}{p_{\max }} - {N_0} > 0\). Note that

$$\begin{aligned} \frac{{dT{h_{i,j}}\left( {{p_{\max }},{p_j}} \right) }}{{d{p_j}}} = {\left\{ \begin{array}{ll}<\!0 &{} \quad 0 \le {p_j} < \frac{{\sqrt{\varepsilon }{G_i}{p_{\max }} - {N_0}}}{{{G_j}}} \\>\!0 &{} \quad {p_j} > \frac{{\sqrt{\varepsilon }{G_i}{p_{max}} - {N_0}}}{{{G_j}}} \\ \end{array}\right. } . \end{aligned}$$

In Case 2.2, we further divide the problem into two cases: Cases 2.2.1 and 2.2.2.

Case 2.2.1  If \((\sqrt{\varepsilon } G_i p_{max}-N_0)/G_j \ge p_{max}\), i.e., \(p_{max} \ge \ N_0/(\sqrt{\varepsilon } G_i-G_j)\). At this time, \(Th_{i,j}(p_{max},p_j)\) is shown in Fig. 12(a). Obviously, the optimal solution is obtained when \(p_j=0\), i.e., the optimal solution in this case is \((p_{max},0)\).

Fig. 12
figure 12

\(Th_{i,j}(p_i^*,p_j)\) when \(p_i^*=p_{max}\)

Case 2.2.2  If \(p_{max}<N_0/(\sqrt{\varepsilon } G_i-G_j )\), \(Th_{i,j}(p_{max},p_j)\) in Case 2.2.2 is shown in Fig. 12(b). Obviously, the optimal solution is either \((p_{max},p_{max})\) or \((p_{max},0)\). Specifically, if \(Th_{i,j}(p_{max},p_{max}) \ge Th_{i,j}(p_{max},0)\), the optimal solution is \((p_{max},p_{max})\), and it is \((p_{max},0)\) otherwise. \(\square\)

Appendix 2: Proving Theorem 2

Lemma 6

The optimal solution\((p_i^*,p_j^*)\)for PCMF-TN satisfies\(p_i^*=p_{max}\)or\(p_j^*=p_{max}\).

Proof

The proof is similar with that of Lemma 5.\(\square\)

Lemma 7

The optimal solution\((p_i^*,p_j^*)\)for PCMF-TN is shown in (11), where\({{\widehat{p}}_i} = \frac{{\sqrt{{N_0}^2 + 4\varepsilon {G_j}^2{p_{\max }}^2 + 4{N_0}\varepsilon {G_j}{p_{\max }}} - {N_0}}}{{2\varepsilon {G_i}}}\), \({{\widehat{p}}_j} = \frac{{\sqrt{{N_0}^2 + 4\varepsilon {G_i}^2{p_{\max }}^2 + 4{N_0}{G_i}{p_{\max }}} - {N_0}}}{{2{G_j}}}\), and \(F{a_{i,j}}\left( {{p_i},{p_j}} \right) = \min \left( {1 + \frac{{{G_i}{p_i}}}{{{G_j}{p_j} + {N_0}}},1 + \frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_i} + {N_0}}}} \right)\).

Proof

Based on Lemma 6, two possibilities of the optimal solution of PCMF-TN are discussed separately and then merged as follows:

Case 1 Assume \(p_i^*=p_{max}\)

In this case, PCMF-TN problem is actually formulated as follows:

$$\begin{aligned} \mathop {\max }\limits _{{p_j}} Fa_{i,j}({p_{max}},{p_j}) \quad s.t. \quad 0 \le {p_j} \le {p_{max }} . \end{aligned}$$

Since \({{\widehat{p}}_j}=\frac{{\sqrt{{N_0}^2 + 4\varepsilon {G_i}^2{p_{\max }}^2 + 4{N_0}{G_i}{p_{\max }}} - {N_0}}}{{2{G_j}}}\), it can be easily verified that \(\frac{{{G_i}{p_{\max }}}}{{{G_j}{{{\widehat{p}}}_j} + {N_0}}} = \frac{{{G_j}{{{\widehat{p}}}_j}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}}\).

Case 1.1    \({{\widehat{p}}_j}<p_{max}\)

Case 1.1.1    For any \(p_j \in [0,{{\widehat{p}}_j})\),

since \(\frac{{{G_i}{p_{max }}}}{{{G_j}{p_j} + {N_0}}}> \frac{{{G_i}{p_{max}}}}{{{G_j}{{{\widehat{p}}}_j} + {N_0}}} = \frac{{{G_j}{{{\widehat{p}}}_j}}}{{\varepsilon {G_i}p_{max}+N_0}} > \frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_{max}} + N_0}}\), \(Fa_{i,j}({{p_{max}},{p_j}}) = min \left( {1 + \frac{{{G_i}{p_{max}}}}{{{G_j}{p_j} + {N_0}}},1 + \frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_{max}} + {N_0}}}}\right) = 1 + \frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_{max}} + {N_0}}} < 1 + \frac{{{G_j}{{{\widehat{p}}}_j}}}{{\varepsilon {G_i}{p_{max}} + {N_0}}} = F{a_{i,j}}({{p_{max}},{{{\widehat{p}}}_j}}).\)

Case 1.1.2   For any \(p_j \in ({{\widehat{p}}_j},p_{max}]\), since \(\frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}}> \frac{{{G_j}{{{\widehat{p}}}_j}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}} = \frac{{{G_i}{p_{\max }}}}{{{G_j}{{{\widehat{p}}}_j} + {N_0}}} > \frac{{{G_i}{p_{\max }}}}{{{G_j}{p_j} + {N_0}}}\),

$$\begin{aligned}&Fa_{i,j}({{p_{max}},{p_j}}< F{a_{i,j}}\left( {{p_{\max }},{{{\widehat{p}}}_j}} \right) . \end{aligned}$$
(10)

In conclusion, for Case 1.1, the optimal solution for PCMF-TN is \((p_{max},{{{\widehat{p}}}_j})\).

Case 1.2   \({{\widehat{p}}_j} \ge p_{max}\)

It can be proved that for all \(p_j \in [0,{{\widehat{p}}}_j]\), \(\frac{{{G_i}{p_{max}}}}{{{G_j}{p_j} + {N_0}}} \ge \frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}}\) is true. Its proof is as follows: Obviously, \(p_j \in [0,{{{\widehat{p}}}_j]}\), \(\frac{{{G_i}{p_{max}}}}{{{G_j}{p_j} + {N_0}}} \ge \frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}}\) is equivalent to \({G_j}^2{p_j}^2 + {N_0}{G_j}{p_j} - \varepsilon {G_i}^2{p_{\max }}^2 - {N_0}{G_i}{p_{\max }} \le 0\). For any \(p_j \in [0,{{\widehat{p}}_j}]\), the latter inequality above is true by following the property of quadratic functions.

$$\begin{aligned} ({p_i^*,p_j^*})&={\left\{ \begin{array}{ll} (p_{max},min({{\widehat{p}}_j},p_{max})) &{} \quad Fa_{i,j}(p_{max},min({{\widehat{p}}_j},p_{max})) > Fa_{i,j}(min({{\widehat{p}}_i},p_{max}),p_{max}) \\ (min({{\widehat{p}}_i},p_{max}),p_{max}) &{}\quad Fa_{i,j}(p_{max},min({{\widehat{p}}_j},p_{max})) \le Fa_{i,j}(min({{\widehat{p}}_i},p_{max}),p_{max}) \\ \end{array}\right. } \end{aligned}$$
(11)
$$\begin{aligned} \min \left( {{{{\widehat{p}}}_i},{p_{\max }}} \right) &={\left\{ \begin{array}{ll} {{{\widehat{p}}}_i} &{}\quad \left( {{p_{\max }}< \frac{{{N_0}\left( {{G_i} - {G_j}} \right) }}{{{G_j}^2 - \varepsilon {G_i}^2}}} \right) \wedge \left( {\sqrt{\varepsilon }{G_i}< {G_j}< {G_i}} \right) \\ p_{max} &{}\quad \left( {\left( {{p_{\max }} \ge \frac{{{N_0}\left( {{G_i} - {G_j}} \right) }}{{{G_j}^2 - \varepsilon {G_i}^2}}} \right) \wedge \left( {\sqrt{\varepsilon }{G_i}< {G_j} < {G_i}} \right) } \right) \vee \left( {{G_j} = {G_i}} \right) \\ {{{\widehat{p}}}_i} &{}\quad {G_j} \le \sqrt{\varepsilon }{G_i} \\ \end{array}\right. } \end{aligned}$$
(12)
$$\begin{aligned} \min \left( {{{{\widehat{p}}}_j},{p_{\max }}} \right) &={\left\{ \begin{array}{ll} {{{\widehat{p}}}_j} &{} \left( {\left( {{p_{\max }} \ge \frac{{{N_0}\left( {{G_i} - {G_j}} \right) }}{{{G_j}^2 - \varepsilon {G_i}^2}}} \right) \wedge \left( {\sqrt{\varepsilon }{G_i}< {G_j}< {G_i}} \right) } \right) \vee \left( {{G_j} = {G_i}} \right) \\ p_{max} &{} \left( {{p_{\max }}< \frac{{{N_0}\left( {{G_i} - {G_j}} \right) }}{{{G_j}^2 - \varepsilon {G_i}^2}}} \right) \wedge \left( {\sqrt{\varepsilon }{G_i}< {G_j} < {G_i}} \right) \\ p_{max} &{} {G_j} \le \sqrt{\varepsilon }{G_i} \\ \end{array}\right. } \end{aligned}$$
(13)

Since \(p_{max} \in [0,{{\widehat{p}}_j}]\), it follows \(\frac{{{G_i}{p_{\max }}}}{{{G_j}{p_{\max }} + {N_0}}} \ge \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}}\).

For any \(p_j \in [0,p_{max})\), we can obtain that \(F{a_{i,j}}\left( {{p_{\max }},{p_j}} \right) = min\left( {1 + \frac{{{G_i}{p_{\max }}}}{{{G_j}{p_j} + {N_0}}},1 + \frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}}} \right) = 1 + \frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}}< 1 + \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}} = F{a_{i,j}}\left( {{p_{\max }},{p_{\max }}} \right)\), owing to \(\frac{{{G_j}{p_j}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}}< \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}} \le \frac{{{G_i}{p_{\max }}}}{{{G_j}{p_{\max }} + {N_0}}} < \frac{{{G_i}{p_{\max }}}}{{{G_j}{p_j} + {N_0}}}\).

In conclusion, the optimal solution for PCMF-TN is \((p_{max},p_{max})\) for Case 1.2. Therefore, we can know that the optimal solution for PCMF-TN is \((p_{max},min(p_{max},{{\widehat{p}}_j}))\) in Case 1.

Case 2 Assume \(p_j^*=p_{max}\)

In this case, PCMF-TN problem can be formulated as follows:

$$\begin{aligned} \mathop {\max }\limits _{{p_i}} Fa_{i,j}({p_{max}},{p_i}) \quad s.t. \quad 0 \le {p_i} \le {p_{max}} \quad G_i p_i \ge G_j p_{max}. . \end{aligned}$$

Since \({{\widehat{p}}_i} = \frac{{\sqrt{{N_0}^2 + 4\varepsilon {G_j}^2{p_{max }}^2 + 4{N_0}\varepsilon {G_j}{p_{max}}} - {N_0}}}{{2\varepsilon {G_i}}}\), it can be easily verified that \(\frac{{{G_i}{{{\widehat{p}}}_i}}}{{{G_j}{p_{max }} + {N_0}}} = \frac{{{G_j}{p_{max }}}}{{\varepsilon {G_i}{{{\widehat{p}}}_i} + {N_0}}}\).

Case 2.1    \({{\widehat{p}}_i}<p_{max}\)

Case 2.1.1    For any \(p_i \in [0,{{\widehat{p}}}_i]\), since \(\frac{{{G_i}{p_i}}}{{{G_j}{p_{\max }} + {N_0}}}< \frac{{{G_i}{{{\widehat{p}}}_i}}}{{{G_j}{p_{\max }} + {N_0}}} = \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{{{\widehat{p}}}_i} + {N_0}}} < \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_i} + {N_0}}}\), \(F{a_{i,j}}\left( {{p_i},{p_{\max }}} \right) = \min \left( {1 + \frac{{{G_i}{p_i}}}{{{G_j}{p_{\max }} + {N_0}}},1 + \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_i} + {N_0}}}} \right) = 1 + \frac{{{G_i}{p_i}}}{{{G_j}{p_{\max }} + {N_0}}} < 1 + \frac{{{G_i}{{{\widehat{p}}}_i}}}{{{G_j}{p_{\max }} + {N_0}}} = F{a_{i,j}}\left( {{{{\widehat{p}}}_i},{p_{\max }}} \right).\)

Case 2.1.2   For any \(p_i \in [{{\widehat{p}}}_i, p_{max}]\), since \(\frac{{{G_i}{p_i}}}{{{G_j}{p_{\max }} + {N_0}}}> \frac{{{G_i}{{{\widehat{p}}}_i}}}{{{G_j}{p_{\max }} + {N_0}}} = \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{{{\widehat{p}}}_i} + {N_0}}} > \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_i} + {N_0}}},\)

$$\begin{aligned}&F{a_{i,j}}\left( {{p_i},{p_{\max }}} \right) < F{a_{i,j}}\left( {{{{\widehat{p}}}_i},{p_{\max }}} \right) . \end{aligned}$$
(14)

In conclusion, for Case 2.1, the optimal solution for PCMF-TN is \(({{{\widehat{p}}}_i},p_{max})\).

Case 2.2    \({{{\widehat{p}}}_i} \ge p_{max}\)

Just as that in Case 1.2, it can be easily verified that for any \(p_i \in [0, {{{\widehat{p}}}_i}]\), \(\frac{{{G_i}{p_i}}}{{{G_j}{p_{\max }} + {N_0}}} \le \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_i} + {N_0}}}\). Since \(p_{max} \in [0,{{{\widehat{p}}}_i}]\), we can thus get \(\frac{{{G_i}{p_{\max }}}}{{{G_j}{p_{\max }} + {N_0}}} \le \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_{\max }} + {N_0}}}\).

For any \(p_i \in [0, p_{max})\), since \(\frac{{{G_i}{p_i}}}{{{G_j}{p_{\max }} + {N_0}}}< \frac{{{G_i}{p_{\max }}}}{{{G_j}{p_{\max }} + {N_0}}} \le \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_{max}} + {N_0}}} < \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_i} + {N_0}}},\) we can know that \(F{a_{i,j}}\left( {{p_i},{p_{\max }}} \right) = \min \left( {1 + \frac{{{G_i}{p_i}}}{{{G_j}{p_{\max }} + {N_0}}},1 + \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{p_i} + {N_0}}}} \right) = 1 + \frac{{{G_i}{p_i}}}{{{G_j}{p_{\max }} + {N_0}}}=1 + \frac{{{G_i}{p_i}}}{{{G_j}{p_{\max }} + {N_0}}} < 1 + \frac{{{G_i}{p_{\max }}}}{{{G_j}{p_{\max }} + {N_0}}} = F{a_{i,j}}\left( {{p_{\max }},{p_{\max }}} \right).\)

In conclusion, for Case 2.2, the optimal solution for PCMF-TN is \((p_{max},p_{max})\). So, for Case 2, the optimal solution for PCMF-TN is \((min(p_{max},{{{\widehat{p}}}_i}),p_{max})\).

Combining Case 1 with Case 2, we thus get Formula (11). We now try to find \(min({{{\widehat{p}}}_j},p_{max})\) and \(min({{{\widehat{p}}}_i},p_{max})\) to get a brief expression for the optimal solution to PCMF-TN.\(\square\)

Lemma 8

If\(\left( {\left( {{p_{\max }} \ge \frac{{{N_0}\left( {{G_i} - {G_j}} \right) }}{{{G_j}^2 - \varepsilon {G_i}^2}}} \right) \wedge \left( {\sqrt{\varepsilon }{G_i}< {G_j} < {G_i}} \right) } \right) \vee \left( {{G_j} = {G_i}} \right)\), then\(\min \left( {{{{\widehat{p}}}_i},{p_{\max }}} \right) = {p_{\max }}\)and\(\min \left( {{{{\widehat{p}}}_j},{p_{\max }}} \right) = {{{\widehat{p}}}_j}\). \(min({{{{\widehat{p}}}_i},{p_{max }}}) = {{{\widehat{p}}}_i}\)and\(min({{{\widehat{p}}}_j},{p_{max}}) = {p_{max}}\)in all other cases,.

Proof

Since \({{{\widehat{p}}}_i} = \frac{{\sqrt{{N_0}^2 + 4\varepsilon {G_j}^2{p_{\max }}^2 + 4{N_0}\varepsilon {G_j}{p_{\max }}} - {N_0}}}{{2\varepsilon {G_i}}} < {p_{\max }}\) is equivalent with the inequation \(\left( {{G_j}^2 - \varepsilon {G_i}^2} \right) {p_{\max }} < {N_0}({G_i} - {G_j})\), it naturally results in Formula (12). \(\square\)

Similarly, we can get Formula (13).

So, if \(\left( {\left( {{p_{\max }} \ge \frac{{{N_0}\left( {{G_i} - {G_j}} \right) }}{{{G_j}^2 - \varepsilon {G_i}^2}}} \right) \wedge \left( {\sqrt{\varepsilon }{G_i}< {G_j} < {G_i}} \right) } \right) \vee \left( {{G_j} = {G_i}} \right)\) holds, \(\min \left( {{{{\widehat{p}}}_i},{p_{\max }}} \right) = {p_{\max }}\) and \(\min \left( {{{{\widehat{p}}}_j},{p_{\max }}} \right) = {{\widehat{p}}_j}\). Otherwise \(\min \left( {{{{\widehat{p}}}_i},{p_{\max }}} \right) = {{\widehat{p}}_i}\) and \(\min \left( {{{{\widehat{p}}}_j},{p_{\max }}} \right) = {p_{\max }}\).

Proof of Theorem 2

From Lemmas 7 and 8, if \(\left( {\left( {{p_{\max }} \ge \frac{{{N_0}\left( {{G_i} - {G_j}} \right) }}{{{G_j}^2 - \varepsilon {G_i}^2}}} \right) \wedge \left( {\sqrt{\varepsilon }{G_i}< {G_j} < {G_i}} \right) } \right) \vee \left( {{G_j} = {G_i}} \right),\)\(( {p_i^*,p_j^*}) = argmax({F{a_{i,j}}( {{p_{\max }},{p_{\max }}} ), F{a_{i,j}}( {{p_{\max }},{{{\widehat{p}}}_j}} )} )\) where \({{{\widehat{p}}}_j} \le {p_{\max }}\). Based on Formula (10), \(F{a_{i,j}}( {{p_{\max }},{{{\widehat{p}}}_j}} )\) is greater than \(F{a_{i,j}}( {{p_{\max }},{p_{\max }}} )\) and \(F{a_{i,j}}( {{p_{\max }},{{{\widehat{p}}}_j}} ) = 1 + \frac{{{G_i}{p_{\max }}}}{{{G_j}{{{\widehat{p}}}_j} + {N_0}}}\).

\((p_i^*,p_j^* )=argmax( {F{a_{i,j}}( {{{{\widehat{p}}}_i},{p_{\max }}} ), F{a_{i,j}}( {{p_{\max }},{p_{\max }}} )} )\) holds in all other cases, where \({{{\widehat{p}}}_i} \le {p_{\max }}\). Based on Formula (14), \(F{a_{i,j}}( {{{{\widehat{p}}}_i},{p_{\max }}} )\) is greater than \(F{a_{i,j}}( {{p_{\max }},{p_{\max }}} )\) and \(F{a_{i,j}}( {{{{\widehat{p}}}_i},{p_{\max }}} ) = 1 + \frac{{{G_j}{p_{\max }}}}{{\varepsilon {G_i}{{{\widehat{p}}}_i} + {N_0}}}\).

Theorem 2 is thus proved by substituting above results into Formula (11). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Ding, H. & Xu, Y. Low-complexity uplink scheduling algorithms with power control in successive interference cancellation based wireless mud-logging systems. Wireless Netw 25, 321–334 (2019). https://doi.org/10.1007/s11276-017-1561-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1561-7

Keywords

Navigation