Skip to main content
Log in

Multi-channel-based scheduling for overlay inband device-to-device communications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of distributed scheduling for overlay inband device-to-device (D2D) communication systems that employ an orthogonal frequency division multiple access physical layer technology. To improve the spatial reuse gain, we propose a multi-channel-based scheduling algorithm that divides the overall radio resource dedicated to D2D communication into multiple data channels and schedules the links allocated to each channel based on a signal-to-interference-aware priority-based scheduling method. Further, we develop a cross-layer queueing model to analyze the medium-access-control layer performance of the proposed scheduling algorithm and compare the analytic results with the simulation results. We demonstrate that the proposed scheduling algorithm outperforms the existing single one-channel-based algorithm to provide lower packet dropping probability, higher spectral efficiency, and lower packet delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Corson, M. S., Laroia, R., Li, J., Par, V., Richardson, T., & Tsirtsis, G. (2010). Toward proximity-aware internetworking. IEEE Wireless Communications Magazines, 17(6), 26–33.

    Article  Google Scholar 

  2. Lei, L., Zhong, Z., Lin, C., & Shen, X. (2012). Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wireless Communications Magazines, 19(3), 96–104.

    Article  Google Scholar 

  3. Asadi, M., Wang, Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. In IEEE Communications Surveys Tutorials, 16(4), 1801–1819. 4th Quater.

  4. Lin, X., Andrews, J. G., Ghosh, A., & Ratasuk, R. (2014). An overview of 3GPP device-to-device proximity services. IEEE Wireless Communications Magazine, 52(4), 40–48.

    Article  Google Scholar 

  5. Liu, J., Sheng, M., Zhang, Y., Wang, X., Sun, H., & Shi, Y. (2013). A distributed opportunistic scheduling protocol for device-to-device communications. In 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1715–1719.

  6. IEEE Std 802.11-2012. (2012). In Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE.

  7. Xu, K., Gerla, M., & Bae, S. (2002). How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. In Proceedings of the IEEE GLOBECOM, Taipei, pp. 72–76.

  8. Kuang, T., & Williamson, C. (2004). A bidirectional multi-channel MAC protocol for improving TCP performance on multihop wireless ad hoc networks. In Proceedings of the ACM MSWiM, Venice, pp. 301–310.

  9. Zhai, H., Wang, J., & Fang, Y. (2006). DUCHA: A new dual-channel MAC protocol for multihop ad hoc networks. IEEE Transactions on Wireless Communications, 5(11), 3224–3233.

    Article  Google Scholar 

  10. Su, H., & Zhang, X. (2008). Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks. IEEE Journal on Selected Areas Communications, 26(1), 118–129.

    Article  Google Scholar 

  11. Bui, L., Eryilmaz, A., Srikant, R., & Wu, X. (2008). Asynchronous congestion control in multi-hop wireless networks with maximal matching-based scheduling. IEEE/ACM Transactions on Networking, 16(4), 826–839.

    Article  Google Scholar 

  12. Bui, L., Sanghavi, S., & Srikant, R. (2009). Distributed link scheduling with constant overhead. IEEE/ACM Transactions on Networking, 17(5), 1467–1480.

    Article  Google Scholar 

  13. Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., & Laroia, R. (2013). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc Networks. IEEE/ACM Transactions on Networking, 21(4), 1215–1228.

    Article  Google Scholar 

  14. Lin, X., Andrews, J. G., & Ghosh, A. (2014). Spectrum sharing for device-to-device communication in cellular networks. IEEE Transactions on Wireless Communication, 13(12), 6727–6740.

    Article  Google Scholar 

  15. Naderializadeh, N., & Avestimehr, A. S. (2014). ITLinQ: A new approach for spectrum sharing in device-to-device communication systems. IEEE Journal on Selected Areas Communications, 32(6), 1139–1151.

    Article  Google Scholar 

  16. Liu, Q., Zhou, S., & Giannakis, G. B. (2005). Queuing with adaptive modulation and coding over wireless links: Cross-layer analysis and design. IEEE Transactions on Wireless Communications, 4(3), 1142–1153.

    Article  Google Scholar 

  17. Huang, W. L., & Letaief, K. B. (2007). Cross-layer scheduling and power control combined with adaptive modulation for wireless ad hoc networks. IEEE Transactions on Communications, 55(4), 728–739.

    Article  Google Scholar 

  18. Rashid, M. M., Hossain, M. J., Hossain, E., & Bhargava, V. K. (2009). Opportunistic spectrum scheduling for multiuser cognitive radio: A queueing analysis. IEEE Transactions on Wireless Communications, 8(10), 5259–5269.

    Article  Google Scholar 

  19. Lei, L., Zhang, Y., Shen, X., Lin, C., & Zhong, Z. (2013). Performance analysis of device-to-device communications with dynamic interference using stochastic Petri Nets. IEEE Transactions on Wireless Communications, 12(12), 6121–6141.

    Article  Google Scholar 

  20. Weber, S. P., Andrews, J. G., & Veciana, G. (2005). Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Transactions on Information Theory, 51(12), 4091–4102.

    Article  MathSciNet  MATH  Google Scholar 

  21. Haenggi, M., Andrews, J. G., Baccelli, F., Dousse, O., & Franceschetti, M. (2009). Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas Communications, 27(7), 1029–1049.

    Article  Google Scholar 

  22. Neuts, M. F. (1981). Matrix geometric solutions in stochastic modelsan algorithmic approach. Baltimore, MD: John Hopkins Univ. Press.

    MATH  Google Scholar 

  23. Bertsekas, Dimitri P., & Gallager, R. (2006). Data networks. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  24. ITU-R Rec. P.1411-6. (2012). In Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz, ITU-R.

  25. ETSI TR 36.942 LTE. (2011). Evolved universal terrestrial radio access (E-UTRA); radio frequency (RF) system scenarios (Release 10) V10.2.0.

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2011098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Jun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Oh, SJ. & Lim, J. Multi-channel-based scheduling for overlay inband device-to-device communications. Wireless Netw 23, 2587–2600 (2017). https://doi.org/10.1007/s11276-016-1306-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1306-z

Keywords

Navigation