Skip to main content
Log in

Throughput analysis of a CSMA based WLAN with successive interference cancellation under Rayleigh fading and shadowing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we consider a carrier sense multiple access based wireless local area network (WLAN) with a successive interference cancellation (SIC) technique. We develop an analytical model to compute the average throughput of a user in a WLAN with the SIC technique in presence of path loss, Rayleigh fading and log-normal shadowing. We then validate the model via simulation. By means of the developed analytical model, we compute the average throughput of a user in WLAN systems without and with the SIC technique and evaluate the throughput gain provided by the SIC technique. We find that the throughput gain provided by the SIC technique is significant. However, the throughput gain varies significantly depending on the parameters of network and wireless channel. We find that the throughput gain provided by the SIC technique increases with increasing the number of users in WLAN, medium access rate of the users and the variance in shadowing and it decreases with increasing the data transmission rate. We also investigate the effect of the decoding capability of the SIC technique on the throughput performance. We find that throughputs obtained with decoding capability of 2 and 3 packets are very close.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. IEEE 802.11 Working Group. (1997). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification.

  2. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  3. Zhai, H., Kwon, Y., & Fang, Y. (2004). Performance analysis of IEEE 802.11 MAC protocols in wireless LANs. Wireless Communications and Mobile Computing, 4, 917–931.

    Article  Google Scholar 

  4. Chatzimisios, P., Vitsas, V., & Boucouvalas, A. C. (2003). Throughput and delay analysis of IEEE 802.11 protocol. In Proceedings of IEEE workshop networked appliances, pp. 168–174.

  5. Felemban, E., & Ekici, E. (2011). Single hop IEEE 802.11 DCF analysis revisited: Accurate modeling of channel access delay and throughput for saturated and unsaturated traffic cases. IEEE Transactions on Wireless Communications, 10, 3256–3266.

    Article  Google Scholar 

  6. Lindgren, A., & Almquist, A. (2001). Quality of service schemes for IEEE 802.11—A simulation study. M.S. thesis, Lule University of Technology.

  7. Bai, G., & Williamson, C. (2003). Simulation evaluation of wireless web performance in an IEEE 802.11b classroom area network. In Proceedings of IEEE 3rd international workshop on wireless local networks (WLN), pp. 663–672.

  8. Iyer, A., Rosenberg, C., & Karnik, A. (2009). What is the right model for wireless channel interference? IEEE/ACM Transactions on Networking, 8(5), 2662–2671.

    Google Scholar 

  9. Uddin, M. F., Rosenberg, C., Zhuang, W., Mitran, P., & Girard, A. (2014). Joint routing and medium access control in fixed random access wireless multihop networks. IEEE/ACM Transactions on Networking, 22(1), 80–93.

    Article  Google Scholar 

  10. Jiang, L., & Walrand, J. (2011). Approaching throughput-optimality in a distributed CSMA algorithm: Collisions and stability. IEEE/ACM Transactions on Networking, 19(23), 816–829.

    Article  Google Scholar 

  11. Qian, D., Zheng, D., Zhang, J., Shroff, N. B., & Joo, C. (2013). Distributed CSMA algorithms for link scheduling in multihop MIMO networks under SINR model. IEEE/ACM Transactions on Networking, 21(3), 746–759.

    Article  Google Scholar 

  12. Hadzi-Velkov, Z., & Spasenovski, B. (2002). Capture effect in IEEE 802.11 basic service area under Influence of Rayleigh fading and near/far effect. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1, 172–176.

    Article  Google Scholar 

  13. Kim, J. H., & Lee, J. K. (1999). Capture effects of wireless CSMA/CA protocols in Rayleigh and shadow fading channels. IEEE Transactions on Vehicular Technology, 48(4), 1277–1286.

    Article  Google Scholar 

  14. Li, X., & Zeng, Q. (2006). Performance analysis of the IEEE 802.11 MAC protocols over a WLAN with capture effect. Information and Media Technologies, 1, 679–685.

    Google Scholar 

  15. Verdu, S. (1998). Multiuser detection. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  16. Andrews, J. G. (2005). Interference cancellation for cellular systems: A contemporary overview. IEEE Wireless Communications Magazine, 12(2), 19–29.

    Article  Google Scholar 

  17. Johansson, A.-L., & Svensson, A. (1995). Successive interference cancellation in multiple data rate DS/CDMA systems. In Proceedings of IEEE vehicular technology conference, pp. 704–708.

  18. Mitran, P., Rosenberg, C., & Shabdanov, S. (2011). Throughput optimization in wireless multihop networks with successive interference cancellation. In Proceedings of IEEE wireless telecommunications symposium.

  19. Yuan, D., Angelakis, V., Chen, L., Karipidis, E., & Larsson, E. G. (2013). On optimal link activation with interference cancelation in wireless networking. IEEE Transactions on Vehicular Technology, 62(2), 939–945.

    Article  Google Scholar 

  20. Toumpis, S., & Goldsmith, A. (2003). Capacity regions for wireless ad hoc networks. IEEE Transaction on Wireless Communications, 2(4), 736–748.

    Article  Google Scholar 

  21. Seskar, I., Pedersen, K. I., Kolding, T. E., & Holtzman, J. M. (1998). Implementation aspects for successive interference cancellation in DS/CDMA systems. Wireless Networks, 4(6), 447–452.

    Article  Google Scholar 

  22. Sen, S., Santhapuri, N., Choudhury, R. R., & Nelakuditi, S. (2013). Successive interference cancellation: Carving out MAC layer opportunities. IEEE Transactions on Mobile Computing, 12(2), 346–357.

    Article  Google Scholar 

  23. Lv, S., Zhuang, W., & Wang, X. (2011). Link scheduling in wireless networks with successive interference cancellation. Computer Networks, 55(6), 2929–2941.

    Article  Google Scholar 

  24. Goussevskaia, O., & Wattenhofer, R. (2012). Scheduling wireless links with successive interference cancellation. In Proceedings of IEEE ICCCN.

  25. Mollanoori, M., & Ghaderi, M. (2012). On the performance of successive interference cancellation in random access networks. In Proceedings of IEEE SECON.

  26. Yu, Y., & Giannakis, G. B. (2007). High-throughput random access using successive interference cancellation in a tree algorithm. IEEE Transactions on Information Theory, 53(12), 4628–4639.

    Article  MathSciNet  MATH  Google Scholar 

  27. Zou, M., Chan, S., Vu, H.L., & Ping, L. (2011). Optimal throughput for 802.11 DCF with multiple packet reception. In Proceedings of IEEE on local and computer networks (LCN).

  28. Subaid, M. R., Hasan, M. R., Ahmed, S. Z., & Uddin, M. F. (2013). Performance of successive interference cancellation technique in IEEE 802.11 based WLANs. In Proceedings of IEEE ICIEV, pp. 1–6.

  29. Lv, S., Zhuang, W., Wang, X., Liu, C., Hu, X., Sun, Y., et al. (2012). A performance study of CSMA in wireless networks with successive interference cancellation. In Proceedings of IEEE ICC.

  30. Rao, S. S. (2002). Applied numerical methods for engineers and scientists. Upper Saddle River: Prentice Hall.

    Google Scholar 

  31. Durgin, G. D., Rappaport, T. S., & Xu, H. (1998). Measurements and models for radio path loss and penetration loss in and around homes and trees at 5.85 GHz. IEEE Transactions on Communcations, 46(11), 1484–1496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Forkan Uddin.

Appendices

Appendix 1: Computation of \(P(E_{i,j,k})\)

For considering high transmission power, the value of \(N_0\) is negligible compared to the received power of the AP from any user. Neglecting the effect of \(N_0\) and using (1) in (23), we obtain

$$ P(E_{i,j,k})=P(E_A, E_B, E_C). $$
(37)

where, the events \(E_A\), \(E_B\) and \(E_C\) are given as

$$E_A\,:=\,R_i^2>\beta \sum _{n \in v \setminus i} R_n^2e^{\gamma _n-\gamma _i}\left( \frac{r_n}{r_i}\right) ^{-\eta } $$
(38)
$$E_B\,:=\,R_j^2>\beta \sum _{n \in v \setminus \{i,j\}} R_n^2e^{\gamma _n-\gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }$$
(39)
$$E_C\,:=\, R_k^2>\beta \sum _{n \in v \setminus \{i,j,k\} }R_n^2e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta } $$
(40)

Further, applying the condition probability formula, \(P(E_{i,j,k})\) can be written as

$$ P(E_{i,j,k})=P(E_A|E_B, E_C)P(E_B|E_C)P(E_C).$$
(41)

Conditioning on \(\underline{\gamma }=\{\gamma _n \quad \forall n\in v\}\) and \(\underline{r}=\{r_n \quad \forall n \in v\}\), \(P(E_C)\), \(P(E_B|E_C)\) and \(P(E_A|E_B, E_C)\) can be written as follows.

$$\begin{aligned} P(E_C|\underline{\gamma },\underline{r})&=\int _{0}^{\infty }\int _{0}^{\infty }\ldots \int _{0}^{\infty } \exp \left( \sum _{n \in v \setminus \{i,j,k\}}\left( -x_n-\beta x_n e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }\right) \right) \prod _{n \in v \setminus \{i,j,k\}}dx_n \nonumber \\&=\prod _{ n\in v \setminus \{i,j,k\}} \frac{1}{1+\beta e^{\gamma _n- \gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }}. \end{aligned}$$
(42)
$$\begin{aligned}&P(E_B|E_C, \underline{\gamma },\underline{r})\nonumber \\&\quad =\int _{0}^{\infty }\int _{0}^{\infty }\ldots \int _{0}^{\infty }\int _{c}^{\infty } \exp \left( \sum _{n \in v \setminus \{i,j\}}\left( -x_n-\beta x_n e^{\gamma _n-\gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }\right) \right) dx_k \prod _{n \in v \setminus \{i,j,k\}}dx_n \end{aligned}$$
(43)

where,

$$c=\beta \sum _{n \in v \setminus \{i,j,k\} }x_ne^{\gamma _n- \gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }. $$
(44)

From (43), it can be shown that

$$\begin{aligned}&P(E_B|E_C, \underline{\gamma },\underline{r})=\frac{1}{1+\beta e^{\gamma _k-\gamma _j}\left( \frac{r_k}{r_j}\right) ^{-\eta }} \prod _{ n\in v \setminus \{i,j,k\}} \frac{1}{1+(\beta +\beta ^2) e^{\gamma _n- \gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }+\beta e^{\gamma _n- \gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }}. \end{aligned}$$
(45)
$$\begin{aligned}&P(E_A|E_B,E_C, \underline{\gamma },\underline{r})=\int _{0}^{\infty }\int _{0}^{\infty }\ldots \int _{0}^{\infty }\int _{c}^{\infty } \int _{b}^{\infty }\exp \left( \sum _{n \in v \setminus i}\left( -x_n-\beta x_n e^{\gamma _n-\gamma _i}\left( \frac{r_n}{r_i}\right) ^{-\eta }\right) \right) dx_j dx_k \prod _{n \in v \setminus \{i,j,k\}}dx_n \end{aligned}$$
(46)

where,

$$ b=\beta \sum _{n \in v \setminus \{i,j\}} x_ne^{\gamma _n- \gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }. $$
(47)

From (46), one can show that

$$\begin{aligned}&P(E_A|E_BE_C, \underline{\gamma },\underline{r})=\frac{1}{1+\beta e^{\gamma _j-\gamma _i}\left( \frac{r_j}{r_i}\right) ^{-\eta }} \frac{1}{1+ (\beta +\beta ^2) e^{\gamma _k-\gamma _i}\left( \frac{r_k}{r_i}\right) ^{- \eta }+\beta e^{\gamma _k-\gamma _j}\left( \frac{r_k}{r_j}\right) ^{-\eta }} \nonumber \\&\prod _{ n\in v \setminus \{i,j,k\}} \frac{1}{1+ (\beta +2\beta ^2+\beta ^3) e^{\gamma _n-\gamma _i}\left( \frac{r_n}{r_i}\right) ^{-\eta }+(\beta +\beta ^2) e^{\gamma _n- \gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }+\beta e^{\gamma _n- \gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }}. \end{aligned}$$
(48)

Replacing \(P[E_A|E_B, E_C]\), \(P[E_B|E_C]\) and \(P[E_C]\) in (41) using (42), (45) and (48), we obtain

$$P(E_{i,j,k}|\underline{\gamma },\underline{r})=F_1(r_i,r_j,r_k,\gamma _i ,\gamma _j,\gamma _k) \prod _{ n\in v \setminus \{i,j,k\}} F_2(r_i,r_j,r_k,\gamma _i,\gamma _j,\gamma _k) $$
(49)

where,

$$\begin{aligned} F_1(r_i,r_j,r_k,\gamma _i,\gamma _j,\gamma _k)=\frac{1}{1+\beta e^{\gamma _k-\gamma _j}\left( \frac{r_k}{r_j}\right) ^{-\eta }}\frac{1}{1+\beta e^{\gamma _j-\gamma _i}\left( \frac{r_j}{r_i}\right) ^{-\eta }} \frac{1 }{1+(\beta +\beta ^2) e^{\gamma _k-\gamma _i}\left( \frac{r_k}{r_i}\right) ^{- \eta }+\beta e^{\gamma _k-\gamma _j}\left( \frac{r_k}{r_j}\right) ^{-\eta }} \end{aligned}$$
(50)

and

$$\begin{aligned} F_2(r_i,r_j,r_k,&\gamma _i,\gamma _j,\gamma _k)= \frac{1}{1+\beta e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }} \frac{1}{1+(\beta +\beta ^2) e^{\gamma _n-\gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }+\beta e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }} \nonumber \\&\frac{1}{1+(\beta +2\beta ^2+\beta ^3) e^{\gamma _n-\gamma _i}\left( \frac{r_n}{r_i}\right) ^{-\eta }+(\beta +\beta ^2) e^{\gamma _n-\gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }+\,\beta e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }}. \end{aligned}$$
(51)

Averaging over \(\forall \gamma _n, n \in v \setminus \{i,j,k\}\) and \(\forall r_n, n \in v \setminus \{i,j,k\}\), from (49), we obtain

$$P(E_{i,j,k}|r_i,r_j,r_k,\gamma _i,\gamma _j,\gamma _k)=F_1(r_i,r_j,r_k,\gamma _i,\gamma _j,\gamma _k) \left[ I(r_i,r_j,r_k,\gamma _i,\gamma _j,\gamma _k)\right] ^{|v|-3} $$
(52)

where,

$$ I(r_i,r_j,r_k,\gamma _i,\gamma _j,\gamma _k)=\int _{- \infty }^{\infty }\int _{0}^{1} F_2(r_i,r_j,r_k,\gamma _i,\gamma _j,\gamma _k)f_r(r) f_\gamma (\gamma ) dr d\gamma. $$
(53)

Further, averaging over \(\gamma _i\), \(\gamma _j\) and \(\gamma _k\), from (52), we obtain

$$\begin{aligned}&P(E_{i,j,k}|r_i,r_j,r_k)\nonumber \\&\quad =\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\int _{-\infty }^{\infty } F_1(r_i,r_j,r_k,\gamma _i,\gamma _j,\gamma _k) \left[ I(r_i,r_j,r_k,\gamma _i,\gamma _j,\gamma _k)\right] ^{|v|-3} f_\gamma (\gamma _i)f_\gamma (\gamma _j) f_\gamma (\gamma _k)d\gamma _i d\gamma _jd\gamma _k. \end{aligned}$$
(54)

Then, averaging over \(r_i\), \(r_j\) and \(r_k\) in (54), \(P(E_{i,j,k})\) can be obtained as

$$ P(E_{i,j,k})=\int _{0}^{1} \int _{0}^{1}\int _{0}^{1} P(E_{i,j,k}|r_i,r_j,r_k) f_r(r_i)f_r(r_j)f_r(r_k) dr_i dr_j dr_k. $$
(55)

Appendix 2: Computation of \(P(E_{j,k})\)

Similar to (37) and (41), \(P(E_{j,k})\) can be obtained as

$$ P(E_{j,k})=P(E_D, E_E)=P(E_D|E_E)P(E_E) $$
(56)

where, the events \(E_D\) and \(E_E\) are given by

$$E_D\,:=\,R_j^2>\beta \sum _{n \in v \setminus j} R_n^2e^{\gamma _n-\gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }$$
(57)
$$E_E\,:=\,R_k^2>\beta \sum _{n \in v \setminus \{j,k\} }R_n^2e^{\gamma _n- \gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta } $$
(58)

Similar to (42) and (45), the expressions of \(P(E_E|\underline{\gamma },\underline{r})\) and \(P(E_D|E_E,\underline{\gamma },\underline{r})\) can be derived and by setting their expressions in (56), one can show that

$$\begin{aligned}&P(E_{j,k}|\underline{\gamma },\underline{r})\nonumber \\&\quad =\frac{1}{1+\beta e^{\gamma _k-\gamma _j}\left( \frac{r_k}{r_j}\right) ^{-\eta }} \prod _{ n\in v \setminus \{j,k\}} \left( \frac{1}{1+(\beta +\beta ^2) e^{\gamma _n-\gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }+\beta e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }} \frac{1}{1+\beta e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }}\right) \end{aligned}$$
(59)

Averaging over \(\forall \gamma _n, n \in v \setminus \{j,k\}\) and \(\forall r_n, n \in v \setminus \{j,k\}\), from (59) it can be shown that

$$P(E_{j,k}|\gamma _j,\gamma _k,r_j,r_k)= \frac{1}{1+\beta e^{\gamma _k- \gamma _j}\left( \frac{r_k}{r_j}\right) ^{-\eta }} \left[ I(r_j,r_k,\gamma _j,\gamma _k)\right] ^{|v|-2} $$
(60)

where,

$$\begin{aligned} I(r_j,r_k,\gamma _j,\gamma _k)=\int _{-\infty }^{\infty }\int _{0}^{1} \frac{1}{1+\beta e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{- \eta }}\frac{ f_r(r) f_\gamma (\gamma ) dr d\gamma }{1+(\beta +\beta ^2) e^{\gamma _n-\gamma _j}\left( \frac{r_n}{r_j}\right) ^{-\eta }+\beta e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }}. \end{aligned}$$
(61)

Further, averaging over \(\gamma _j\) and \(\gamma _k\), from (60), we obtain

$$\begin{aligned} P(E_{j,k}|r_j,r_k)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty } \frac{1}{1+\beta e^{\gamma _k-\gamma _j}\left( \frac{r_k}{r_j}\right) ^{- \eta }} \left[ I(r_j,r_k,\gamma _j,\gamma _k)\right] ^{|v|-2} f_\gamma (\gamma _j) f_\gamma (\gamma _k) d\gamma _jd\gamma _k. \end{aligned}$$
(62)

Again, averaging over \(r_j\) and \(r_k\) in (62), \(P(E_{j,k})\) can be written as

$$P(E_{j,k})=\int _{0}^{1}\int _{0}^{1} P(E_{j,k}|r_j,r_k) f_r(r_j)f_r(r_k) dr_j dr_k.$$
(63)

Appendix 3: Computation of \(P(E_k)\)

Similar to (42), one can determine \(P(E_k|\underline{\gamma },\underline{r})\) as

$$ P(E_k|\underline{\gamma },\underline{r})= \prod _{ n\in v \setminus k} \frac{1}{1+\beta e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{- \eta }} $$
(64)

Averaging over \(\forall \gamma _n, n \in v \setminus k\) and \(\forall r_n, n \in v \setminus k\), from (64), we obtain

$$ P(E_k|\gamma _k,r_k)= \left[ I(r_k,\gamma _k)\right] ^{|v|-1} $$
(65)

where,

$$ I(r_k,\gamma _k)=\int _{-\infty }^{\infty }\int _{0}^{1} \frac{1}{1+\beta e^{\gamma _n-\gamma _k}\left( \frac{r_n}{r_k}\right) ^{-\eta }} f_r(r) f_\gamma (\gamma ) dr d\gamma. $$
(66)

Further, averaging over \(\gamma _k\) and \(r_k\) in (65), we obtain

$$\begin{aligned} P(E_k)=\int _{0}^{1}\int _{-\infty }^{\infty } \left[ I(r_k,\gamma _k)\right] ^{|v|-1} f_\gamma (\gamma _k)f_r(r_k) d\gamma _k dr_k. \end{aligned}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.F. Throughput analysis of a CSMA based WLAN with successive interference cancellation under Rayleigh fading and shadowing. Wireless Netw 22, 1285–1298 (2016). https://doi.org/10.1007/s11276-015-1038-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1038-5

Keywords

Navigation