Skip to main content
Log in

Symbol-error rate optimized complex field network coding for wireless communications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, the complex field network coding (CFNC) over multi-user relay channel with non-orthogonal communications is studied. In order to improve the performance of CFNC coded relay channel, we propose to optimize the CFNC according to the symbol-error rate (SER) characteristics of the network. To achieve such an optimization, we first derive a bound for the SER of the coded relay channel, which uses maximum-likelihood detection both at the relay and destination node. Then, CFNC optimization is formulated as a convex program, which aims to minimize the SER-bound while considering the constraint on total transmit power and the network geometry. We next derive Karush–Kuhn–Tucker (KKT) conditions of optimal CFNC parameters. Due to the existence of nonlinearity in the simplified KKT conditions, a closed form solution for the optimal parameters is not possible. To overcome this difficulty, we also propose an approximate solution for the optimal CFNC, which utilizes an information theoretical result. After the SER-optimized CFNC parameters are determined, we investigate the average bit error rate (BER) of the network for various parameters. The performed numerical experiments reveal that SER-optimized CFNC could provide a BER improvement up-to 29 % over the conventional CFNC for a two-user relay channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  2. Xu, Z., Qin, W., Tang, Q., & Jiang, D. (2014). Energy-efficient cognitive access approach to convergence communications. Science China Information Sciences, 57(4), 1–12.

    Article  Google Scholar 

  3. Vergara, E. J., Sanjuan, J., & Nadjm-Tehrani, S. (2013). Kernel level energy-efficient 3G background traffic shaper for android smartphones. In Proceedings of IEEE 9th international wireless communications and mobile computing conference (IWCMC’13), (pp. 443–449).

  4. Jiang, D., Wang, X., Guo, L., Ni, H., & Chen, Z. (2011). Accurate estimation of large-scale IP traffic matrix. AEU-International Journal of Electronics and Communications, 65(1), 75–86.

    Article  Google Scholar 

  5. Cover, T. M., & Gamal, A. E. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584.

    Article  MATH  Google Scholar 

  6. Ahlswede, R., Cai, N., Li, S. Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Kishore, S., & Li, J. (2006). Wireless diversity through network coding. In Proceedings of the wireless communications and networking conference, Vol. 3, (pp. 1681–1686).

  8. Katti, S., Rahul, H., Hu, W., Katabi, D., M´edard, M., & Crowcroft, J. (2006) XORs in the air: Practical wireless network coding. In Proceedings of the ACM SIGCOMM, (pp. 243–254).

  9. Li, S. Y. R., Yeung, R. W., & Cai, N. (2003). Linear network coding. IEEE Transactions on Information Theory, 49(2), 371–381.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, S., & Liew, S. C. (2009). Channel coding and decoding in a relay system operated with physical layer network coding. IEEE Journal on Selected Areas in Communications, 27(5), 788–796.

    Article  Google Scholar 

  11. Zhang, S., & Liew, S. C., & Lam, P. P. (2006) Hot topic: Physical layer network coding for the two-way relay channels. In Proceedings of the 12th MobiCom, (pp. 358–365).

  12. Wang, T., & Giannakis, G. B. (2008). Complex field network coding for multiuser cooperative communications. IEEE Journal of Selected Areas in Communications, 26(3), 561–571.

    Article  MathSciNet  Google Scholar 

  13. Guo, Z., Wang, B., Xie, P., Zeng, W., & Cui, J. (2009). Efficient error recovery with network coding in underwater sensor networks. Ad Hoc Networks, 7(4), 791–802.

    Article  Google Scholar 

  14. Bhat, U., & Duman, T. M. (2012). Decoding strategies at the relay with physical-layer network coding. IEEE Transactions on Wireless Communications, 11(12), 4503–4513.

    Article  Google Scholar 

  15. Liew, S. C., Zhang, S., & Lu, L. (2013). Physical-layer network coding: Tutorial, survey, and beyond. Physical Communication, 6, 4–42.

    Article  Google Scholar 

  16. Lu, L., Wang, T., Liew, S. C., & Zhang, S. (2013). Implementation of physical-layer network coding. Physical Communication, 6, 74–87.

    Article  Google Scholar 

  17. Akino, T. K., Popovski, P., & Tarokh, V. (2009). Optimized constellations for two-way wireless relaying with physical network coding. IEEE Journal of Selected Areas in Communications, 27(5), 773–787.

    Article  Google Scholar 

  18. Zaidi, A. A., Khormuji, M. N., Yao, S., & Skoglund, M. (2009). Optimized analog network coding strategies for the white Gaussian multiple-access relay channel. IEEE ITW, (pp. 460–464).

  19. Wang, S., Song, Q., Wang, X., & Jamalipour, A. (2011). Rate and power Adaptation for analog network coding. IEEE Transactions on Vehicular Technology, 60(5), 2302–2313.

    Article  Google Scholar 

  20. Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  21. Nocedal, J., & Wright, J. (2006). Numerical optimization (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Keskinoz.

Appendices

Appendix 1: upper bound for symbol error probability at the destination

Pair-wise error probability (PEP) at the destination can be expressed as

$$\begin{aligned} P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} } \right.} \right) & = P\left( {c_{i} \to c_{i} {\text{ at R}}\left| {c_{i} } \right.} \right) \times P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} \to c_{i} {\text{ at R}},c_{i} } \right.} \right) \\ & \quad + P\left( {c_{i} \to c_{j} {\text{ at R}}\left| {c_{i} } \right.} \right) \times \left( {1 - P\left( {c_{i} \to c_{i} {\text{ at D}}\left| {c_{i} \to c_{j} {\text{ at R}},c_{i} } \right.} \right)} \right) \\ \end{aligned}$$
(35)

where \(P\left( {c_{i} \to c_{i} {\text{ at R}}\left| {c_{i} } \right.} \right)\) and \(P\left( {c_{i} \to c_{j} {\text{ at R}}\left| {c_{i} } \right.} \right)\) denote the probability of correct decoding probability and PEP at the relay respectively when CFNC symbol c i is sent. Also, \(P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} \to c_{i} {\text{ at R}},c_{i} } \right.} \right)\) represents the PEP at the destination given that c i is sent and the decision of the relay is correct, whereas \(P\left( {c_{i} \to c_{i} {\text{ at D}}\left| {c_{i} \to c_{j} {\text{ at R}},c_{i} } \right.} \right)\) is the probability of making correct decision of the destination when c i is sent and the relay reaches an erroneous decision.

The PEP of the relay (by assuming that CSI is known at the relay and ML relaying is used) becomes

$$\begin{aligned} P\left( {c_{i} \to c_{j} {\text{ at R }}\left| {c_{i} } \right.,{\mathbf{h}}_{sr} } \right) & = P \left(\left| {\sum\limits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} ({\mathbf{x}}_{i} )_{k} } + z_{r} - \sum\limits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} ({\mathbf{x}}_{i} )_{k} } } \right|^{2}\right. \\ & \quad\left. \ge \left| {\sum\limits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} ({\mathbf{x}}_{i} )_{k} } + z_{r} - \sum\limits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} ({\mathbf{x}}_{j} )_{k} } } \right|^{2}\right) \\ & = P\left( {\left| {z_{r} } \right|^{2} \ge \left| {\sum\limits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} ({\mathbf{x}}_{i} )_{k} } + z_{r} - \sum\limits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} ({\mathbf{x}}_{j} )_{k} } } \right|^{2} } \right) \\ & = P\left( { \, - \left| {\sum\limits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right|^{2} \ge z_{r}^{*} \left( {\sum\limits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right) +\, z_{r} \left( {\sum\limits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right)^{*} } \right) \\ \end{aligned}$$
(36)

where “*” denotes the complex conjugation and the random variable \(z_{r}^{*} \left( {\sum\nolimits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right) + z_{r} \left( {\sum\nolimits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right)^{*}\) is Gaussian distributed with zero mean and variance of \(4\sigma^{2} \left| {\sum\nolimits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right|^{2}\). Therefore, the PEP in Eq. (36) can be found as

$$P\left( {c_{i} \to c_{j} {\text{ at R }}\left| {c_{i} } \right.,{\mathbf{h}}_{sr} } \right) = Q\left( {\frac{{\left| {\sum\nolimits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right|}}{2\sigma }} \right)$$
(37)

where d ijk represents the kth component of the difference vector between the ith and jth decision vectors, \({\mathbf{d}}_{ij} = ({\mathbf{x}}_{i} - {\mathbf{x}}_{j} )\). This probability can be upper bounded using the Chernoff-bound as follows:

$$P\left( {c_{i} \to c_{j} {\text{ at R }}\left| {c_{i} } \right.,{\mathbf{h}}_{sr} } \right) \le \frac{1}{2}e^{{ - \frac{{\left| {\sum\nolimits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right|^{2} }}{{8\sigma^{2} }}}}$$
(38)

Consequently, a bound on the average PEP can be obtained by averaging the upper-bound in Eq. (38) over fading gains of the users-to-relay links as:

$$P\left( {c_{i} \to c_{j} {\text{ at R }}\left| {c_{i} } \right.,{\mathbf{h}}_{sr} } \right) \le E_{{{\text{h}}_{sr} }} \left[ {e^{{ - \frac{{\left| {\sum\nolimits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right|^{2} }}{{8\sigma^{2} }}}} } \right]$$
(39)

\(E_{{{\mathbf{h}}_{sr} }} [.]\) represents the expectation operation with respect to the CSI vector \({\mathbf{h}}_{sr}\). Each fading coefficient \(h_{{s_{k} r}}\) is assumed to be a zero-mean complex Gaussian random variable with unit variance, which is denoted by CN (0, 1). Hence, the distribution of random variable \(\sum\nolimits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} }\) is CN \(CN\left( {0, \sum\nolimits_{k = 1}^{N} {g_{k} } \left| {\theta_{k} } \right|^{ 2} d_{ijk}^{ 2} } \right)\), and the pdf of \(\left| {\sum\nolimits_{k = 1}^{N} {\sqrt {g_{k} } h_{{s_{k} r}} \theta_{k} d_{ijk} } } \right|^{2}\) becomes exponential with the mean of \(\sum\nolimits_{k = 1}^{N} {g_{k} \left| {\theta_{k} } \right|^{ 2} } d_{ijk}^{ 2}\). Hence, the expectation term in Eq. (39) can be deduced as:

$$\begin{aligned} P\left( {c_{i} \to c_{j} {\text{ at R}}\left| {c_{i} } \right.} \right) & \le \int\limits_{0}^{\infty } {\frac{1}{2}e^{{ - \frac{t}{{8\sigma^{2} }}}} } \frac{1}{{\sum\nolimits_{k = 1}^{N} {g_{k} \left| {\theta_{k} } \right|^{2} d_{ijk}^{2} } }}e^{{\frac{ - t}{{\sum\nolimits_{k = 1}^{N} {g_{k} \left| {\theta_{k} } \right|^{2} d_{ijk}^{2} } }}}} dt \\ & \le \frac{0.5}{{\left( {1 + \frac{{\sum\nolimits_{k = 1}^{N} {g_{k} \left| {\theta_{k} } \right|^{2} d_{ijk}^{2} } }}{{8\sigma^{2} }}} \right)}} \\ \end{aligned}$$
(40)

Similar to Eq. (36), the PEP at the destination with complete CSI can be calculated, when it employs ML detection and the decoding of the relay is correct, as:

$$\begin{aligned} P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} \to c_{i} {\text{ at R}},c_{i} ,h_{sd} ,h_{rd} } \right.} \right) & = P\left(\left| {\sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} (x_{i} )_{k} } + z_{d} - \sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} (x_{i} )_{k} } } \right|^{2} \right.\\ & \quad \left.+\,\left| {\sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} (x_{i} )_{k} } + z_{d} - h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} (x_{i} )_{k} } } \right|^{2} \right.\\ & \quad\left. \ge \left| {\sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} (x_{i} )_{k} } + z_{d} - \sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} (x_{j} )_{k} } } \right|^{2} \right.\\ & \quad \left.+\,\left| {\sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} (x_{i} )_{k} } + z_{d} - \sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} (x_{j} )_{k} } } \right|^{2} \right) \\ & = P\left( {\left| {z_{d} } \right|^{2} + \left| {z_{d} } \right|^{2} \ge \left| {\sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } + z_{d} } \right|^{2} +\,\left| {\sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} d_{ijk} } + z_{d} } \right|^{2} } \right) \\ & = P\left( - \left| {\sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } } \right|^{2} - \left| {\sqrt {g_{r} } h_{rd}\sum\limits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2} \right.\\ & \quad \left.\ge 2\text{Re} \left\{ z_{d}^{*} \sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } \right\} + 2\text{Re} \left\{ z_{d}^{*} \sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} d_{ijk} } \right\} \right) \\\end{aligned}$$
(41)

Since z d is assumed to be CN (0, 2σ 2), the random variable \(2\text{Re} \{ z_{d}^{*} \sum\nolimits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } \} + 2\text{Re} \{ z_{d}^{*} \sqrt {g_{r} } h_{rd} \sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } \}\) is Gaussian with mean of zero and variance of \(4\sigma^{2} \left( {\left| {\sum\nolimits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } } \right|^{2} + \left| {\sqrt {g_{r} } h_{rd} \sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2} } \right)\). Hence, the PEP in Eq. (41) can be determined as

$$P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} \to c_{i} {\text{ at R}},c_{i} ,{\mathbf{h}}_{sd} ,h_{rd} } \right.} \right) = Q\left( {\frac{{\sqrt {\left| {\sum\nolimits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } } \right|^{2} + \left| {\sqrt {g_{r} } h_{rd} \sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2} } }}{2\sigma }} \right)$$
(42)

which is upper bounded by

$$P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} \to c_{i} {\text{ at R}},c_{i} ,{\mathbf{h}}_{sd} ,h_{rd} } \right.} \right) \le \frac{1}{2}e^{{ - \frac{{\left| {\sum\nolimits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } } \right|^{2} + \left| {\sqrt {g_{r} } h_{rd} \sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2} }}{{8\sigma^{2} }}}}$$
(43)

Again, a bound on the average PEP at the destination can be obtained by averaging the upper-bound in Eq. (43) over the fading coefficients \(h_{{s_{k} d}}\), h rd . Since fading coefficients are zero-mean complex Gaussian random variables with unit variance, \(\left| {\sum\nolimits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } } \right|^{2}\) and \(\left| {\sqrt {g_{r} } h_{rd} \sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2}\) are exponential random variables with a mean of \(\lambda_{1} = \sum\nolimits_{k = 1}^{N} {\gamma_{k} \left| {\theta_{k} } \right|^{2} d_{ijk}^{2} }\) and \(\lambda_{2} = g_{r} \sum\nolimits_{k = 1}^{N} {\left| {\theta_{k} } \right|^{2} d_{ijk}^{2} }\) , respectively. So, the bound on the average PEP at the destination can be obtained as:

$$\begin{aligned} P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} \to c_{i} {\text{ at R}},c_{i} } \right.} \right) & \le \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {0.5\exp \left( { - \frac{{t_{1} + t_{2} }}{{8\sigma^{2} }}} \right)} } \frac{{\exp \left( { - \frac{{t_{1} }}{{\lambda_{1} }}} \right)}}{{\lambda_{1} }}\frac{{\exp \left( { - \frac{{t_{2} }}{{\lambda_{2} }}} \right)}}{{\lambda_{2} }}dt_{1} dt_{2} \\ & \le \frac{0.5}{{\left( {1 + \frac{{\sum\nolimits_{k = 1}^{N} {\gamma_{k} \left| {\theta_{k} } \right|^{2} d_{ijk}^{2} } }}{{8\sigma^{2} }}} \right)\left( {1 + \frac{{\left| {g_{r} \sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2} }}{{8\sigma^{2} }}} \right)}} \\ \end{aligned}$$
(44)

A similar analysis can be conducted to determine\(P\left( {c_{i} \to c_{i} {\text{ at D}}\left| {c_{i} \to c_{i} {\text{ at R}},c_{i} } \right.} \right)\). Toward that goal, we need to determine first, \(P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} \to c_{i} {\text{ at R}},c_{i} } \right.} \right)\) as:

$$\begin{aligned} P\left( {c_{i} \to c_{i} {\text{ at D}}\left|{c_{i} \to c_{i} {\text{ at R}},c_{i},{\mathbf{h}}_{{{\mathbf{sd}}}} ,h_{rd} } \right.} \right) & =P\left( \, \left| {\sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} }h_{{s_{k} d}} \theta_{k} ({\mathbf{x}}_{i} )_{k} } + z_{d} -\sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}}\theta_{k} ({\mathbf{x}}_{i} )_{k} } } \right|^{2} \right.\\ &\quad \left.+ \left| {\sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N}{\theta_{k} ({\mathbf{x}}_{i} )_{k} } + z_{d} - h_{rd}\sum\limits_{k = 1}^{N} {\theta_{k} ({\mathbf{x}}_{i} )_{k} } }\right|^{2} \right.\\ & \quad \left.\le \left| {\sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} ({\mathbf{x}}_{i} )_{k} } + z_{d} - \sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} ({\mathbf{x}}_{j} )_{k} } } \right|^{2} \right.\\ & \quad\left. + \left| {\sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} ({\mathbf{x}}_{i} )_{k} } + z_{d} - \sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} ({\mathbf{x}}_{j} )_{k} }} \right|^{2} \right) \\ & = P\left( \, \left| {z_{d} } \right|^{2} + \left| {z_{d} } \right|^{2} \ge \left| {\sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } + z_{d} } \right|^{2} + \left| {\sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} d_{ijk} } + z_{d} } \right|^{2} \right) \\ & = P\left( \, - \left|{\sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } } \right|^{2} + \left| {\sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2}\right. \\ & \quad \left.\ge 2\text{Re} \left\{ z_{d}^{*} \sum\limits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } \right\} + 2\text{Re} \left\{ z_{d}^{*} \sqrt {g_{r} } h_{rd} \sum\limits_{k = 1}^{N} {\theta_{k} d_{ijk} }\right\} \, \right) \\ & = Q\left( {\frac{{ - \left| {\sum\nolimits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } } \right|^{2} + \left| {\sqrt {g_{r} } h_{rd} \sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2} }}{{2\sigma \sqrt {\left| {\sum\nolimits_{k = 1}^{N} {\sqrt {\gamma_{k} } h_{{s_{k} d}} \theta_{k} d_{ijk} } } \right|^{2} + \left| {\sqrt {g_{r} } h_{rd} \sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2} } }} \, } \right) \\ \end{aligned}$$
(45)

In order to obtain a bound on the \(P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} \to c_{i} {\text{ at R}},c_{i} } \right.} \right)\), we need to average Eq. (45) over CSI coefficients, which cannot be calculated analytically. For simplicity, we bound the fourth term in Eq. (35) as:

$$1 - P\left( {c_{i} \to c_{i} {\text{ at D}}\left| {c_{i} \to c_{j} {\text{ at R}},c_{i} } \right.} \right) \le 1$$
(46)

In parallel lines, the first term in Eq. (35) is also bounded as:

$$P\left( {c_{i} \to c_{i} {\text{ at R}}\left| {c_{i} } \right.} \right) \le 1$$
(47)

Therefore, the upper bound for PEP at the destination in Eq. (35) can be re-written by combining Eqs. (40), (44), (46) and (47) as:

$$P\left( {c_{i} \to c_{j} {\text{ at D}}\left| {c_{i} } \right.} \right) \le \frac{0.5}{{1 + \frac{{\sum\nolimits_{k = 1}^{N} {\gamma_{k} |\theta_{k} |^{2} d_{ijk}^{2} } }}{{8\sigma^{2} }}}}\frac{1}{{1 + \frac{{g_{r} \left| {\sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2} }}{{8\sigma^{2} }}}} + \frac{0.5}{{1 + \frac{{\sum\nolimits_{k = 1}^{N} {g_{k} |\theta_{k} |^{2} d_{ijk}^{2} } }}{{8\sigma^{2} }}}}$$
(48)

As a result, the upper bound for SEP (\(\bar{P}_{e}^{D}\)) at the destination can be given as:

$$\bar{P}_{e}^{D} \le \frac{1}{8}\sum\limits_{i = 1}^{{2^{N} }} {\sum\limits_{\begin{subarray}{l} j = 1 \\ j \ne i \end{subarray} }^{{2^{N} }} {\frac{1}{{1 + \frac{{\sum\nolimits_{k = 1}^{N} {\gamma_{k} |\theta_{k} |^{2} d_{ijk}^{2} } }}{{8\sigma^{2} }}}}} } \frac{1}{{1 + \frac{{g_{r} \left| {\sum\nolimits_{k = 1}^{N} {\theta_{k} d_{ijk} } } \right|^{2} }}{{8\sigma^{2} }}}} + \frac{1}{{1 + \frac{{\sum\nolimits_{k = 1}^{N} {g_{k} |\theta_{k} |^{2} d_{ijk}^{2} } }}{{8\sigma^{2} }}}}$$
(49)

By expressing the signature θ k in the polar form as \(\theta_{k} = \sqrt {P_{k} } e^{{j\phi_{k} }}\), Eq. (49) can be re-written for N = 2 as:

$$\begin{aligned} {{\bar{P}}_{e}^{D}} &\le \frac{1}{8}\sum\limits_{i = 1}^{4} {\sum\limits_{\begin{subarray}{l} j = 1 \\ j \ne i \end{subarray} }^{4} {\frac{1}{{1 + \frac{{\sum\nolimits_{k = 1}^{2} {\gamma_{k} P_{k} d_{ijk}^{2} } }}{{8\sigma^{2} }}}}} } \frac{1}{{1 + \frac{{g_{r} \left| {\sum\nolimits_{k = 1}^{2} {\sqrt {P_{k} } e^{{j\phi_{k} }} d_{ijk} } } \right|^{2} }}{{8\sigma^{2} }}}} + \frac{1}{{1 + \frac{{\sum\nolimits_{k = 1}^{2} {g_{k} P_{k} d_{ijk}^{2} } }}{{8\sigma^{2} }}}} \\ & \quad = \frac{1}{8}\sum\limits_{i = 1}^{4} {\sum\limits_{\begin{subarray}{l} j = 1 \\ j \ne i \end{subarray} }^{4} {\frac{1}{{1 + \frac{{\sum\nolimits_{k = 1}^{2} {\gamma_{k} P_{k} d_{ijk}^{2} } }}{{8\sigma^{2} }}}}} } \frac{1}{{1 + \frac{{g_{r} \left( {P_{1} d_{ij1}^{2} + P_{2} d_{ij2}^{2} + 2\sqrt {P_{1} } d_{ij1} \sqrt {P_{2} } d_{ij2} \cos (\phi_{1} - \phi_{2} )} \right)}}{{8\sigma^{2} }}}} + \frac{1}{{1 + \frac{{\sum\nolimits_{k = 1}^{2} {g_{k} P_{k} d_{ijk}^{2} } }}{{8\sigma^{2} }}}} \end{aligned}$$
(50)

Appendix 2: KKT conditions for the ser bound minimization problem at the destination

It is important to note that the average SEP bound in Eq. (11) is convex in powers P 1 and P 2, the cosine of the phase difference δ ≡ cos (ϕ 1 − ϕ 2). In order to determine the signatures of the users, both P k and ϕ k need to be optimally decided by minimizing the bound in Eq. (11) under the total power constraint \(\sum\nolimits_{k = 1}^{2} {P_{k} = P_{T} }\) together with the fact that each user actively sends information (i.e., \(P_{k} > 0{\text{ for }}k = 1,2\)). Additionally, there is a box constraint on δ such that −1 ≤ δ ≤ 1. Therefore, we can state the determination of optimal signatures as a constrained optimization problem.

$$\begin{aligned} & \mathop {\text{minimize}}\limits_{{P_{1} ,P_{2} ,\delta }} f_{0} (P_{1} ,P_{2} ,\delta ) =\, \frac{1}{8}\sum\limits_{i = 1}^{4} \mathop{\sum}\limits_{\mathop{ j = 1}\limits_{j \ne i}}^{4} {\frac{1}{{1 +\,\frac{{\sum\limits_{k = 1}^{2} {\gamma_{k} P_{k} d_{ijk}^{2} } }}{{8\sigma^{2} }}}}}\frac{1}{{1 +\,\frac{{g_{r} \left( {P_{1} d_{ij1}^{2} + P_{2} d_{ij2}^{2} + 2\sqrt {P_{1} } d_{ij1} \sqrt {P_{2} } d_{ij2} \delta } \right)}}{{8\sigma^{2} }}}} + \frac{1}{{1 +\,\frac{{\sum\limits_{k = 1}^{2} {g_{k} P_{k} d_{ijk}^{2} } }}{{8\sigma^{2} }}}} \\ & {\text{such that}} \\ &f_{1} (P_{1} ,P_{2} ,\delta ) = P_{T} - \sum\limits_{k = 1}^{2} {P_{k} = 0} \\ &f_{2} (P_{1} ,P_{2} ,\delta ) = P_{1} > 0, \hfill \\ &f_{3} (P_{1} ,P_{2} ,\delta ) = P_{2} > 0, \, \\ &f_{4} (P_{1} ,P_{2} ,\delta ) = \delta + 1 \ge 0, \\ &f_{5} (P_{1} ,P_{2} ,\delta ) = 1 - \delta \ge 0, \\ \end{aligned}$$
(51)

Since the objective function is convex and the constraints are affine, the optimization in Eq. (51) is a convex program, and its unique optimal global solution exists, which satisfies Karush–Kuhn–Tucker (KKT) conditions:

$$\begin{aligned} \nabla f_{0} \left( {{\mathbf{p}}^{*} } \right) - \sum\limits_{i = 1}^{5} {\lambda_{i}^{*} \nabla f_{i} \left( {{\mathbf{p}}^{*} } \right)} & = {\mathbf{0}}, \\ f_{1} \left( {{\mathbf{p}}^{*} } \right) & = 0, \\ f_{i} \left( {{\mathbf{p}}^{*} } \right) & > 0,{\text{ for }}i = 2,3 \\ f_{i} \left( {{\mathbf{p}}^{*} } \right) & \ge 0,{\text{ for }}i = 4,5 \\ \lambda_{i}^{*} & \ge 0,{\text{for }}i = 1,2,3,4,5 \\ \lambda_{i}^{*} f_{i} \left( {{\mathbf{p}}^{*} } \right) & = 0,{\text{for }}i = 1,2,3,4,5 \\ \end{aligned}$$
(52)

where \({\mathbf{p}} = [P_{1} ,P_{2} ,\delta ]^{t}\) is the vector of user signature parameters, and \({\mathbf{p}}^{*}\) represents the corresponding optimal vector.

The KKT conditions in Eq. (52) result in the following equations as:

$$\begin{aligned} & - \left( {1 + \frac{{\gamma_{1} P_{1} }}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{\gamma_{1} }}{{4\sigma^{2} }}} \right)\left( {1 + \frac{{g_{r} P_{1} }}{{2\sigma^{2} }}} \right)^{ - 1} - \left( {1 + \frac{{\gamma_{1} P_{1} }}{{2\sigma^{2} }}} \right)^{ - 1} \left( {1 + \frac{{g_{r} P_{1} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{g_{r} }}{{4\sigma^{2} }} - \left( {1 + \frac{{g_{1} P_{1} }}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{g_{1} }}{{4\sigma^{2} }}} \right) - \left( {1 + \frac{{g_{1} P_{1} + g_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{g_{1} }}{{4\sigma^{2} }}} \right) \\ & \quad - \left( {1 + \frac{{\gamma_{1} P_{1} + \gamma_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{\gamma_{1} }}{{4\sigma^{2} }}} \right)\left[ {\left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} + 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 1} + \left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} - 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 1} } \right] \\ & \quad - \left( {1 + \frac{{\gamma_{1} P_{1} + \gamma_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 1} \left[ {\left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} + 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{g_{r} \left( {1 + \frac{{\sqrt {P_{2} } \delta }}{{\sqrt {P_{1} } }}} \right)}}{{8\sigma^{2} }}} \right) + \left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} - 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{g_{r} \left( {1 - \frac{{\sqrt {P_{2} } \delta }}{{\sqrt {P_{1} } }}} \right)}}{{8\sigma^{2} }}} \right)} \right] \\ & \quad - \lambda_{1}^{*} \left( { - 1} \right) - \lambda_{2}^{*} \left( 1 \right) = 0 \\ \end{aligned}$$
(53)
$$\begin{aligned} & - \left( {1 + \frac{{\gamma_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{\gamma_{2} }}{{4\sigma^{2} }}} \right)\left( {1 + \frac{{g_{r} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 1} - \left( {1 + \frac{{\gamma_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 1} \left( {1 + \frac{{g_{r} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{g_{r} }}{{4\sigma^{2} }} - \left( {1 + \frac{{g_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{g_{2} }}{{4\sigma^{2} }}} \right) - \left( {1 + \frac{{g_{1} P_{1} + g_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{g_{2} }}{{4\sigma^{2} }}} \right) \\ & \quad - \left( {1 + \frac{{\gamma_{1} P_{1} + \gamma_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{\gamma_{2} }}{{4\sigma^{2} }}} \right)\left[ {\left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} + 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 1} + \left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} - 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 1} } \right] \\ & \quad - \left( {1 + \frac{{\gamma_{1} P_{1} + \gamma_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 1} \left[ {\left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} + 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{g_{r} \left( {1 + \frac{{\sqrt {P_{1} } \delta }}{{\sqrt {P_{2} } }}} \right)}}{{8\sigma^{2} }}} \right) + \left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} - 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{g_{r} \left( {1 - \frac{{\sqrt {P_{1} } \delta }}{{\sqrt {P_{2} } }}} \right)}}{{8\sigma^{2} }}} \right)} \right] \\ & \quad \lambda_{1}^{*} \left( { - 1} \right) - \lambda_{3}^{*} \left( 1 \right) = 0 \\ \end{aligned}$$
(54)
$$\begin{aligned} & - \left( {1 + \frac{{\gamma_{1} P_{1} + \gamma_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 1} \left[ {\left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} + 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{g_{r} 2\sqrt {P_{1} P_{2} } }}{{8\sigma^{2} }}} \right) + \left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} - 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 2} \left( {\frac{{ - g_{r} 2\sqrt {P_{1} P_{2} } }}{{8\sigma^{2} }}} \right)} \right] \\ & \quad - \lambda_{4}^{*} + \lambda_{5}^{*} = 0 \\ \end{aligned}$$
(55)

Since \(P_{ 1}^{*} > 0\) and \(P_{ 2}^{*} > 0\), both \(\lambda_{ 2}^{*}\) and \(\lambda_{ 3}^{*}\) become zero due to complementarity conditions. Also, because of the complementarity conditions \(\lambda_{i}^{*} f_{i} \left( {{\mathbf{p}}^{*} } \right) = 0\) for i = 4 and 5, \(\lambda_{ 4}^{*}\) and \(\lambda_{ 5}^{*}\) can be shown to be zero, otherwise δ should be equal to either −1 or 1. We can prove this by contradiction. Assuming that \(\delta^{*}\) is −1, \(\lambda_{ 5}^{*}\) has to be zero due to complementarity slackness. Therefore, the following expression from Eq. (55) can be stated:

$$\left[ {\left( {1 + \frac{{\gamma_{1} P_{1} + \gamma_{2} P_{2} }}{{2\sigma^{2} }}} \right)^{ - 1} \left( {\frac{{g_{r} 2\sqrt {P_{1} P_{2} } }}{{2\sigma^{2} }}} \right)} \right] \times \left[ { - \left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} - 2\sqrt {P_{1} P_{2} } } \right)}}{{2\sigma^{2} }}} \right)^{ - 2} + \left( {1 + \frac{{g_{r} (P_{1} + P_{2} + 2\sqrt {P_{1} P_{2} } )}}{{2\sigma^{2} }}} \right)^{ - 2} } \right] = \lambda_{4}^{*}$$
(56)

Since \(\left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} - 2\sqrt {P_{1} P_{2} } } \right)}}{{2\sigma^{2} }}} \right)^{ - 2} > \left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} + 2\sqrt {P_{1} P_{2} } } \right)}}{{2\sigma^{2} }}} \right)^{ - 2}\), the LHS of Eq. (56) is less than zero, which is a contradiction because \(\lambda_{ 4}^{*} \ge 0\). Similarly, we can show that \(\lambda_{ 4}^{*}\) should be zero. Hence, by putting \(\lambda_{ 4}^{*} = \lambda_{ 5}^{*} = 0\) in Eq. (55), we obtain the following expression:

$$\left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} + 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 2} = \left( {1 + \frac{{g_{r} \left( {P_{1} + P_{2} - 2\sqrt {P_{1} P_{2} } \delta } \right)}}{{2\sigma^{2} }}} \right)^{ - 2}$$
(57)

The only solution of Eq. (57) is δ = 0, which implies

$$\phi_{2}^{*} - \phi_{1}^{*} = (2k + 1)\pi /2{\text{ for any integer }}k$$
(58)

Combining Eq. (57) with Eqs. (53) and (54), the optimal powers \(P_{ 1}^{*}\) and \(P_{ 2}^{*}\) should satisfy the following expressions:

$$\begin{aligned} & 0.5\left( {1 + \frac{{\gamma_{1} P_{1}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{\gamma_{1} }}{{2\sigma^{2} }}\left( {1 + \frac{{g_{r} P_{1}^{*} }}{{2\sigma^{2} }}} \right)^{ - 1} +\,0.5\left( {1 + \frac{{\gamma_{1} P_{1}^{*} }}{{2\sigma^{2} }}} \right)^{ - 1} \left( {1 + \frac{{g_{r} P_{1}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{g_{r} }}{{2\sigma^{2} }} \\ & \quad \quad +\,0.5\left( {1 + \frac{{\gamma_{1} P_{1}^{*} + \gamma_{2} P_{2}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{\gamma_{1} }}{{2\sigma^{2} }}\left( {1 + \frac{{g_{r} \left( {P_{1}^{*} + P_{2}^{*} } \right)}}{{2\sigma^{2} }}} \right)^{ - 1} +\,0.5\left( {1 + \frac{{g_{1} P_{1}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{g_{1} }}{{2\sigma^{2} }} +\,0.5\left( {1 + \frac{{g_{1} P_{1}^{*} + g_{2} P_{2}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{g_{1} }}{{2\sigma^{2} }} \\ & \quad = 0.5\left( {1 + \frac{{\gamma_{2} P_{2}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{\gamma_{2} }}{{2\sigma^{2} }}\left( {1 + \frac{{g_{r} P_{2}^{*} }}{{2\sigma^{2} }}} \right)^{ - 1} +\,0.5\left( {1 + \frac{{\gamma_{2} P_{2}^{*} }}{{2\sigma^{2} }}} \right)^{ - 1} \left( {1 + \frac{{g_{r} P_{2}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{g_{r} }}{{2\sigma^{2} }} \\ & \quad \quad +\,0.5\left( {1 + \frac{{\gamma_{1} P_{1}^{*} + \gamma_{2} P_{2}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{\gamma_{2} }}{{2\sigma^{2} }}\left( {1 + \frac{{g_{r} \left( {P_{1}^{*} + P_{2}^{*} } \right)}}{{2\sigma^{2} }}} \right)^{ - 1} +\,0.5\left( {1 + \frac{{g_{2} P_{2}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{g_{2} }}{{2\sigma^{2} }} +\,0.5\left( {1 + \frac{{g_{1} P_{1}^{*} + g_{2} P_{2}^{*} }}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{g_{2} }}{{2\sigma^{2} }} \\ \end{aligned}$$
(59)

Appendix 3

The first and second derivative of f(x) in Eq. (28) can be determined as

$$\begin{aligned} f^{'} \left( x \right) & = - \left( {1 + \frac{{g_{1} x}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2g_{1}^{2} }}{{4\sigma^{4} }} - \left( {1 + \frac{{\gamma_{1} x}}{{2\sigma^{2} }}} \right)^{ - 1} \left( {1 + \frac{{g_{r} x}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2g_{r}^{2} }}{{4\sigma^{4} }} - \left( {1 + \frac{{\gamma_{1} x}}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{2\gamma_{1} g_{r} }}{{4\sigma^{4} }}\left( {1 + \frac{{g_{r} x}}{{2\sigma^{2} }}} \right)^{ - 2} \\ & \quad - \left( {1 + \frac{{\gamma_{1} x}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2\gamma_{1}^{2} }}{{4\sigma^{4} }}\left( {1 + \frac{{g_{r} x}}{{2\sigma^{2} }}} \right)^{ - 1} - \left( {1 + \frac{{g_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2g_{2}^{2} }}{{4\sigma^{4} }} - \left( {1 + \frac{{\gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 1} \left( {1 + \frac{{g_{r} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2g_{r}^{2} }}{{4\sigma^{4} }} \\ & \quad - \left( {1 + \frac{{\gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{2\gamma_{2} g_{r} }}{{4\sigma^{4} }}\left( {1 + \frac{{g_{r} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 2} - \left( {1 + \frac{{\gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2\gamma_{2}^{2} }}{{4\sigma^{4} }}\left( {1 + \frac{{g_{r} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 1} \\ & \quad - \left( {1 + \frac{{g_{1} x + g_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2g_{1} (g_{1} - g_{2} )}}{{4\sigma^{4} }} + \left( {1 + \frac{{g_{1} x + g_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2g_{2} (g_{1} - g_{2} )}}{{4\sigma^{4} }} \\ & \quad - \left( {1 + \frac{{\gamma_{1} x + \gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2\gamma_{1} (\gamma_{1} - \gamma_{2} )}}{{4\sigma^{4} }}\left( {1 + \frac{{g_{r} (P_{T} )}}{{2\sigma^{2} }}} \right)^{ - 1} + \left( {1 + \frac{{\gamma_{1} x + \gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{2\gamma_{2} (\gamma_{1} - \gamma_{2} )}}{{4\sigma^{4} }}\left( {1 + \frac{{g_{r} (P_{T} )}}{{2\sigma^{2} }}} \right)^{ - 1} \\ \end{aligned}$$
(60)
$$\begin{aligned} f^{''} (x) & = \left( {1 + \frac{{g_{1} x}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6g_{1}^{3} }}{{8\sigma^{6} }} + \left( {1 + \frac{{\gamma_{1} x}}{{2\sigma^{2} }}} \right)^{ - 1} \left( {1 + \frac{{g_{r} x}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6g_{r}^{3} }}{{8\sigma^{6} }} + \left( {1 + \frac{{\gamma_{1} x}}{{2\sigma^{2} }}} \right)^{ - 2} \left( {1 + \frac{{g_{r} x}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{6\gamma_{1} g_{r}^{2} }}{{8\sigma^{6} }} \\ & \quad + \left( {1 + \frac{{\gamma_{1} x}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{6\gamma_{1}^{2} g_{r} }}{{8\sigma^{6} }}\left( {1 + \frac{{g_{r} x}}{{2\sigma^{2} }}} \right)^{ - 2} + \left( {1 + \frac{{\gamma_{1} x}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6\gamma_{1}^{3} }}{{8\sigma^{6} }}\left( {1 + \frac{{g_{r} x}}{{2\sigma^{2} }}} \right)^{ - 1} \\ & \quad - \left( {1 + \frac{{g_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6g_{2}^{3} }}{{8\sigma^{6} }} - \left( {1 + \frac{{\gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 1} \left( {1 + \frac{{g_{r} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6g_{r}^{3} }}{{8\sigma^{6} }} \\ & \quad - \left( {1 + \frac{{\gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 2} \frac{{6\gamma_{2} g_{r}^{2} }}{{8\sigma^{6} }}\left( {1 + \frac{{g_{r} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 3} - \left( {1 + \frac{{\gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 3} \frac{{6\gamma_{2}^{2} g_{r} }}{{8\sigma^{6} }}\left( {1 + \frac{{g_{r} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 2} \\ & \quad - \left( {1 + \frac{{\gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6\gamma_{2}^{3} }}{{8\sigma^{6} }}\left( {1 + \frac{{g_{r} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 1} + \left( {1 + \frac{{g_{1} x + g_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6g_{1} (g_{1} - g_{2} )^{2} }}{{8\sigma^{6} }} \\ & \quad - \left( {1 + \frac{{g_{1} x + g_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6g_{2} (g_{1} - g_{2} )^{2} }}{{8\sigma^{6} }} + \left( {1 + \frac{{\gamma_{1} x + \gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6\gamma_{1} (\gamma_{1} - \gamma_{2} )^{2} }}{{8\sigma^{6} }}\left( {1 + \frac{{g_{r} (P_{T} )}}{{2\sigma^{2} }}} \right)^{ - 1} \\ & \quad - \left( {1 + \frac{{\gamma_{1} x + \gamma_{2} (P_{T} - x)}}{{2\sigma^{2} }}} \right)^{ - 4} \frac{{6\gamma_{2} (\gamma_{1} - \gamma_{2} )^{2} }}{{8\sigma^{6} }}\left( {1 + \frac{{g_{r} (P_{T} )}}{{2\sigma^{2} }}} \right)^{ - 1} \\ \end{aligned}$$
(61)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eritmen, K., Keskinoz, M. Symbol-error rate optimized complex field network coding for wireless communications. Wireless Netw 21, 2467–2481 (2015). https://doi.org/10.1007/s11276-015-0924-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0924-1

Keywords

Navigation