Skip to main content
Log in

A review on anaerobic microorganisms isolated from oil reservoirs

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Role of microorganisms in the petroleum industry is wide-ranging. To understand the role of microorganisms in hydrocarbon transformation, identification of such microorganisms is vital, especially the ones capable of in situ degradation. Microorganisms play a pivotal role in the degradation of hydrocarbons and remediation of heavy metals. Anaerobic microorganisms such as Sulphate Reducing Bacteria (SRB), responsible for the production of hydrogen sulphide (H2S) within the reservoir, reduces the oil quality by causing reservoir souring and reduction in oil viscosity. This paper reviews the diversity of SRB, methanogens, Nitrogen Reducing Bacteria (NRB), and fermentative bacteria present in oil reservoirs. It also reviews the extensive diversity of these microorganisms, their applications in petroleum industries, characteristics and adaptability to survive in different conditions, the potential to alter the petroleum hydrocarbons properties, the propensity to petroleum hydrocarbon degradation, and remediation of metals.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas A, Al-Amer AM, Laoui T et al (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161

    Google Scholar 

  • Aitken CM, Jones DM, Larter S (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294

    CAS  PubMed  Google Scholar 

  • Al Zuhair S, El-Naas MH, Al Hassani H (2008) Sulfate inhibition effect on sulfate-reducing bacteria. J Biochem Technol 1:39–44

    Google Scholar 

  • Al-Bahry S, Al-Wahaibi Y, Elsha A, Al-Bemani AS, Joshi SJ, Al-Makhmari HS, Al-Sulaimani HS (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeterior Biodegrad 81:141–146

    CAS  Google Scholar 

  • Al-Hawash AB, Dragh MA, Li S et al (2018) Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt J Aquat Res 44:71–76

    Google Scholar 

  • Al-Sulaimani H, Joshi S, Al-Wahaibi Y et al (2011) Microbial biotechnology for enhancing oil recovery: current developments and future prospects. Biotechnol Bioinf Bioeng 1:147–158

    Google Scholar 

  • Anderson RT, Lovley DR (2000) Hexadecane decay by methanogenesis. Nature 404:722–723

    CAS  PubMed  Google Scholar 

  • Annweiler E, Materna A, Safinowski M et al (2000) Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:5329–5333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68:852–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora P, Kshirsagar P, Rana DP, Dhakephalkar P (2019) Hyperthermophilic Clostridium sp. N-4 produced a glycoprotein biosurfactant that enhanced recovery of residual oil at 96°C in lab studies. Colloids Surf B Biointerfaces 182:110372

    CAS  PubMed  Google Scholar 

  • Atlas RM (1985) Effects of hydrocarbons on microorganisms and petroleum biodegradation in arctic ecosystems. Pet Eff Arct Environ 63–100

  • Ayangbenro AS, Olanrewaju OS, Babalola OO (2018) Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front Microbiol 9:1986

    PubMed  PubMed Central  Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V et al (2005) Molecular characterization of sulfate‐reducing bacteria in a New England salt marsh. Environ Microbiol 7:1175–1185

    CAS  PubMed  Google Scholar 

  • Ball HA, Reinhard M (1996) Monoaromatic hydrocarbon transformation under anaerobic conditions at Seal Beach, California: laboratory studies. Environ Toxicol Chem Int J 15:114–122

    CAS  Google Scholar 

  • Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15:591–594

    CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    CAS  PubMed  Google Scholar 

  • Barth T (1991) Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Appl Geochem 6:1–15

    CAS  Google Scholar 

  • Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98

    CAS  PubMed  Google Scholar 

  • Bass C (1999) ZoBell’s contribution to petroleum microbiology. In Proceedings of the 8th international symposium on microbial ecology. Microbial biosystems: New Frontiers. Atlantic Canada Society for Microbial Ecology, Halifax, Canada

  • Bass C, Sanders P, Lappin-Scott H (1998) Study of biofilms of sulfidogens from North Sea oil production facilities using continuous-flow apparatus. Geomicrobiol J 15:101–120

    Google Scholar 

  • Basso O, Caumette P, Magot M (2005) Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 55:101–104

    CAS  PubMed  Google Scholar 

  • Bastin ES, Greer FE, Merritt C, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63:21–24

    CAS  PubMed  Google Scholar 

  • Bedessem ME, Swoboda-Colberg NG, Colberg PJ (1997) Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments. FEMS Microbiol Lett 152:213–218

    CAS  Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT et al (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beeder J, Torsvik T, Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336

    CAS  PubMed  Google Scholar 

  • Belyakova E, Rozanova E, Borzenkov I et al (2006) The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology 75:161–171

    CAS  Google Scholar 

  • Berdugo-Clavijo C, Dong X, Soh J et al (2012) Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 81:124–133

    CAS  PubMed  Google Scholar 

  • Berdugo-Clavijo C, Gieg LM (2014) Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Front Microbiol 5:197

    PubMed  PubMed Central  Google Scholar 

  • Bernard F, Connan J, Magot M (1992) Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques. Society of Petroleum Engineers

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV et al (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bregnard T, Haner A, Hohener P, Zeyer J (1997) Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl Environ Microbiol 63:2077–2081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bregnard TP, Höhener P, Häner A, Zeyer J (1996) Degradation of weathered diesel fuel by microorganisms from a contaminated aquifer in aerobic and anaerobic microcosms. Environ Toxicol Chem Int J 15:299–307

    CAS  Google Scholar 

  • Brouers F, Al-Musawi TJ (2015) On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. J Mol Liq 212:46–51

    CAS  Google Scholar 

  • Bryant R, Douglas J (1987) Evaluation of microbial systems in porous media for enhanced oil recovery. In SPE International symposium on oilfield chemistry, pp 449–456

  • Bryant RS (1987) Potential uses of microorganisms in petroleum recovery technology. Proceedings of the Oklahoma Academy of Science 67:97–104

    Google Scholar 

  • Bryant RS, Burchfield TE, Dennis D, Hitzman D (1990) Microbial-enhanced waterflooding: Mink Unit project. SPE Reserv Eng 5:9–13

    CAS  Google Scholar 

  • Burggraf S, Fricke H, Neuner A et al (1990a) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269

    CAS  PubMed  Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990b) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13:24–28

    Google Scholar 

  • Burland SM, Edwards EA (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl Environ Microbiol 65:529–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell ME, Garrett RM, Prince RC, Suflita JM (1998) Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ Sci Technol 32:2191–2195

    CAS  Google Scholar 

  • Callbeck CM, Agrawal A, Voordouw G (2013) Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate. Appl Environ Microbiol 79:5059–5068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castro H, Teixeira P, Kirby R (1997) Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying. J Appl Microbiol 82:87–94

    CAS  Google Scholar 

  • Cayol J-L, Ollivier B, Patel B et al (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp nov, isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. Int J Syst Evol Microbiol 45:783–789

    CAS  Google Scholar 

  • Champagne CP, Mondou F, Raymond Y, Roy D (1996) Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Res Int 29:555–562

    CAS  Google Scholar 

  • Chang W, Um Y, Holoman TRP (2006) Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis. Biotechnol Lett 28:425–430

    CAS  PubMed  Google Scholar 

  • Chen CI, Taylor R (1997) Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria. Appl Microbiol Biotechnol 48:121–128

    CAS  PubMed  Google Scholar 

  • Chen Q, Liu Z, Peng Q et al (2010) Diversity of halophilic and halotolerant bacteria isolated from non-saline soil collected from Xiaoxi National Natural Reserve, Hunan Province. Wei Sheng Wu Xue Bao 50:1452–1459

    CAS  PubMed  Google Scholar 

  • Christensen B, Torsvik T, Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl Environ Microbiol 58:1244–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coates JD, Anderson RT, Lovley DR (1996) Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl Environ Microbiol 62:1099–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney J, Silver S, Beck E (1985) Factors influencing hydrocarbon degradation in three freshwater lakes. Microb Ecol 11:127–137

    CAS  PubMed  Google Scholar 

  • Daghio M, Vaiopoulou E, Aulenta F et al (2018) Anode potential selection for sulfide removal in contaminated marine sediments. J Hazard Mater 360:498–503

    CAS  PubMed  Google Scholar 

  • Dang PN, Dang TCH, Lai TH, Stan-Lotter H (1996) Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385–392

    Google Scholar 

  • Dar SA, Yao L, van Dongen U et al (2007) Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73:594–604

    CAS  PubMed  Google Scholar 

  • Davey ME, Wood WA, KEy R et al (1993) Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales”. Syst Appl Microbiol 16:191–200

    Google Scholar 

  • Davidova I, Hicks M, Fedorak P, Suflita J (2001) The influence of nitrate on microbial processes in oil industry production waters. J Ind Microbiol Biotechnol 27:80–86

    CAS  PubMed  Google Scholar 

  • Davidova IA, Duncan KE, Choi OK, Suflita JM (2006) Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742

    CAS  PubMed  Google Scholar 

  • Devereux R, Kane MD, Winfrey J, Stahl DA (1992) Genus-and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst Appl Microbiol 15:601–609

    CAS  Google Scholar 

  • Dinh HT, Kuever J, Mußmann M et al (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    CAS  PubMed  Google Scholar 

  • Doelle HW (2014) Bacterial metabolism. 2nd edition, Academic Press, New York

  • Donaldson EC, Chilingarian GV, Yen TF (1989) Microbial enhanced oil recovery. Developments in petroleum science 22:1–227

    Google Scholar 

  • Edwards E, Wills L, Reinhard M, Grbić-Galić D (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl Environ Microbiol 58:794–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards EA, Grbić-Galić D (1994) Anaerobic degradation of toluene and o-xylene by a methanogenic consortium. Appl Environ Microbiol 60:313–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64

    CAS  PubMed  Google Scholar 

  • Elferink SJO, Maas RN, Harmsen HJ, Stams AJ (1995) Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch Microbiol 164:119–124

    Google Scholar 

  • Elias DA, Krumholz LR, Tanner RS, Suflita JM (1999) Estimation of methanogen biomass by quantitation of coenzyme M. Appl Environ Microbiol 65:5541–5545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elshahed MS, McInerney MJ (2001) Is interspecies hydrogen transfer needed for toluene degradation under sulfate-reducing conditions? FEMS Microbiol Ecol 35:163–169

    CAS  PubMed  Google Scholar 

  • Ensley BD, Suflita JM (1995) Metabolism of environmental contaminants by mixed and pure cultures of sulfate-reducing bacteria. In: Sulfate-reducing bacteria. Springer, pp 293–332

  • Fardeau M-L, Goulhen F, Bruschi M et al (2009) Archaeoglobus fulgidus and Thermotoga elfii, thermophilic isolates from deep geothermal water of the Paris Basin. Geomicrobiol J 26:119–130

    CAS  Google Scholar 

  • Fardeau M-L, Ollivier B, Patel B et al (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Evol Microbiol 47:1013–1019

    CAS  Google Scholar 

  • Fardeau M-L, Salinas MB, l’Haridon S, et al (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474

    CAS  PubMed  Google Scholar 

  • Feio MJ, Zinkevich V, Beech IB et al (2004) Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. Int J Syst Evol Microbiol 54:1747–1752

    CAS  PubMed  Google Scholar 

  • Fiala G, Stetter KO, Jannasch HW et al (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 C. Syst Appl Microbiol 8:106–113

    Google Scholar 

  • Fischer F, Zillig W, Stetter K, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513

    CAS  PubMed  Google Scholar 

  • Fullerton H, Crawford M, Bakenne A et al (2013) Anaerobic oxidation of ethene coupled to sulfate reduction in microcosms and enrichment cultures. Environ Sci Technol 47:12374–12381

    CAS  PubMed  Google Scholar 

  • Galushko A, Rozanova E (1991) Desulfobacterium cetonicum sp. nov., a sulfate-reducing bacterium which oxidizes fatty acids and ketones. Microbiol Mikrobiol 60:742–746

    Google Scholar 

  • Ghosh B, Al Shalabi E (2011) Solvent induced oil viscosity reduction and its effect on waterflood recovery efficiency. Adv Pet Explor Dev 2:24–31

    CAS  Google Scholar 

  • Gieg LM, Davidova IA, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12:3074–3086

    CAS  PubMed  Google Scholar 

  • Godsy EM, Goerlitz DF, Grbic-Galic D (1992) Methanogenic biodegradation of creosote contaminants in natural and simulated ground‐water ecosystems. Groundwater 30:232–242

    CAS  Google Scholar 

  • Grabowski A, Nercessian O, Fayolle F et al (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443

    CAS  PubMed  Google Scholar 

  • Grbić-Galić D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260

    PubMed  PubMed Central  Google Scholar 

  • Greene AC, Patel BK, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Evol Microbiol 47:505–509

    CAS  Google Scholar 

  • Grishchenkov V, Townsend R, McDonald T et al (2000) Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochem 35:889–896

    CAS  Google Scholar 

  • Grossi V, Cravo-Laureau C, Méou A et al (2007) Anaerobic 1-alkene metabolism by the alkane-and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T. Appl Environ Microbiol 73:7882–7890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haner A, Hohener P, Zeyer J (1997) Degradation of Trimethylbenzene Isomers by an Enrichment Culture under N (inf2) O-Reducing Conditions. Appl Environ Microbiol 63:1171–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haridon S, Miroshnichenko M, Hippe H et al (2001) Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334

    CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    CAS  PubMed  Google Scholar 

  • Hentges DJ (2011) Anaerobes: general characteristics. In: Medical Microbiology, 4th edn. University of Texas Medical Branch at Galveston, Galveston (TX)

    Google Scholar 

  • Herath A, Wawrik B, Qin Y et al (2016) Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses. FEMS Microbiol Ecol 92:fiw062

    PubMed  Google Scholar 

  • Hines ME, Evans RS, Genthner BRS et al (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holliger C, Gaspard S, Glod G et al (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol Rev 20:517–523

    CAS  PubMed  Google Scholar 

  • Holmes D, Smith J (2016) Biologically produced methane as a renewable energy source. Adv Appl Microbiol 97:1–61

    PubMed  Google Scholar 

  • Homayuni F, Hamidi A, Vatani A et al (2011) Viscosity reduction of heavy and extra heavy crude oils by pulsed electric field. Pet Sci Technol 29:2052–2060

    CAS  Google Scholar 

  • Huber R, Langworthy TA, König H et al (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90oC. Arch Microbiol 144:324–333

    CAS  Google Scholar 

  • Huber R, Woese C, Langworthy TA et al (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales”. Syst Appl Microbiol 12:32–37

    Google Scholar 

  • Hussain A, Hasan A, Javid A, Qazi JI (2016) Exploited application of sulfate-reducing bacteria for concomitant treatment of metallic and non-metallic wastes: a mini review. 3 Biotech 6:1–10

    Google Scholar 

  • Jeanthon C, l’Haridon S, Cueff V et al (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52:765–772

    CAS  PubMed  Google Scholar 

  • Jeanthon C, Reysenbach A-L, l’Haridon S et al (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97

    CAS  PubMed  Google Scholar 

  • Jenneman G, Gevertz D, Wright M (1996) Sulfide bioscavenging of sour produced water by natural microbial populations. In Proceedings of the 3rd International petroleum environmental conference, pp 693–704

  • Jin Q, Kirk MF (2018) pH as a primary control in environmental microbiology: 1. thermodynamic perspective. Front Environ Sci 6:21

    Google Scholar 

  • Jones D, Head I, Gray N et al (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    CAS  PubMed  Google Scholar 

  • Jones W, Leigh J, Mayer F et al (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    CAS  Google Scholar 

  • Karr EA, Sattley WM, Rice MR et al (2005) Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 71:6353–6359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazumi J, Caldwell M, Suflita J et al (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ Sci Technol 31:813–818

    CAS  Google Scholar 

  • Keenleyside W (2019) Microbiology: Canadian Edition. Simple Book Publishing, New York, NY

    Google Scholar 

  • Kleindienst S, Herbst F-A, Stagars M et al (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kniemeyer O, Musat F, Sievert SM et al (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901

    CAS  PubMed  Google Scholar 

  • Knittel K, Boetius A, Lemke A et al (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20:269–294

    CAS  Google Scholar 

  • Kovacik WP Jr, Takai K, Mormile MR et al (2006) Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe (III)-and S°‐reducing bacteria in a sulfate‐rich environment. Environ Microbiol 8:141–155

    CAS  PubMed  Google Scholar 

  • Kryachko Y, Dong X, Sensen CW, Voordouw G (2012) Compositions of microbial communities associated with oil and water in a mesothermic oil field. Antonie Van Leeuwenhoek 101:493–506

    PubMed  Google Scholar 

  • Kurr M, Huber R, König H et al (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110oC. Arch Microbiol 156:239–247

    CAS  Google Scholar 

  • l’Haridon S, Miroshnichenko M, Hippe H et al (2002) Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722

    PubMed  Google Scholar 

  • l’Haridon S, Reysenbacht A-L, Glenat P et al (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224

    Google Scholar 

  • Langenhoff AA, Brouwers-Ceiler DL, Engelberting JH et al (1997) Microbial reduction of manganese coupled to toluene oxidation. FEMS Microbiol Ecol 22:119–127

    CAS  Google Scholar 

  • Lazar I, Petrisor I, Yen T (2007) Microbial enhanced oil recovery MEOR. Pet Sci Technol 25:1353–1366

    CAS  Google Scholar 

  • Leu J, McGovern-Traa C, Porter A, Hamilton W (1999) The same species of sulphate‐reducing Desulfomicrobium occur in different oil field environments in the North Sea. Lett Appl Microbiol 29:246–252

    CAS  PubMed  Google Scholar 

  • Li D, Midgley DJ, Ross JP et al (2012) Microbial biodiversity in a Malaysian oil field and a systematic comparison with oil reservoirs worldwide. Arch Microbiol 194:513–523

    CAS  PubMed  Google Scholar 

  • Li G, McInerney MJ (2017) Use of Biosurfactants in Oil Recovery. In: Lee SY (ed) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Springer International Publishing, Cham, pp 1–16

    Google Scholar 

  • Li H, Lai R, Jin Y et al (2020) Directional culture of petroleum hydrocarbon degrading bacteria for enhancing crude oil recovery. J Hazard Mater 390:122160

    CAS  PubMed  Google Scholar 

  • Li H, Yang S-Z, Mu B-Z et al (2007) Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Microbiol Ecol 60:74–84

    CAS  PubMed  Google Scholar 

  • Lien T, Beeder J (1997) Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Evol Microbiol 47:1124–1128

    CAS  Google Scholar 

  • Lien T, Madsen M, Steen IH, Gjerdevik K (1998) Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Evol Microbiol 48:469–474

    Google Scholar 

  • Lin J, Hao B, Cao G et al (2014) A study on the microbial community structure in oil reservoirs developed by water flooding. J Pet Sci Eng 122:354–359

    CAS  Google Scholar 

  • Magot M, Basso O, Tardy-Jacquenod C, Caumette P (2004) Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int J Syst Evol Microbiol 54:1693–1697

    CAS  PubMed  Google Scholar 

  • Magot M, Caumette P, Desperrier J et al (1992) Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Evol Microbiol 42:398–402

    CAS  Google Scholar 

  • Magot M, Ollivier B, Patel BK (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    CAS  PubMed  Google Scholar 

  • Mathir A (2013) Analysis of nutrient requirements for the anaerobic digestion of Fischer-Tropsch reaction water. PhD Thesis, University of Kwazulu-Natal

  • Mayilraj S, Kaksonen AH, Cord-Ruwisch R et al (2009) Desulfonauticus autotrophicus sp. nov., a novel thermophilic sulfate-reducing bacterium isolated from oil-production water and emended description of the genus Desulfonauticus. Extremophiles 13:247–255

    CAS  PubMed  Google Scholar 

  • Mayumi D, Mochimaru H, Yoshioka H et al (2011) Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Environ Microbiol 13:1995–2006

    CAS  PubMed  Google Scholar 

  • Meckenstock RU, Annweiler E, Michaelis W et al (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:2743–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer RF (1987) Exploration for heavy crude oil and natural bitumen. United States

  • Miller J, Wakerley D (1966) Growth of sulphate-reducing bacteria by fumarate dismutation. Microbiology 43:101–107

    CAS  Google Scholar 

  • Miranda-Tello E, Fardeau M-L, Sepulveda J et al (2003) Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate-and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. J Med Microbiol 53:1509–1514

    CAS  Google Scholar 

  • Miroshnichenko M, Bonch-Osmolovskaya E, Neuner A et al (1989) Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262

    Google Scholar 

  • Mußmann M, Ishii K, Rabus R, Amann R (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7:405–418

    PubMed  Google Scholar 

  • Muyzer G, Stams AJ (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  PubMed  Google Scholar 

  • Myhr S, Torsvik T (2000) Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int J Syst Evol Microbiol 50:1611–1619

    CAS  PubMed  Google Scholar 

  • Nazina T, Ivanova A, Kanchaveli L, Rozanova E (1988) Desulfotomaculum kuznetsovii sp. nov., a new spore-forming, thermophilic, methylotrophic, sulfate-reducing bacterium. Mikrobiologiya 57:823–827

    CAS  Google Scholar 

  • Nazina T, Rozanova E (1978) Thermophillic sulfate-reducing bacteria from oil-bearing strata. Mikrobiologiia 47:142–148

    CAS  PubMed  Google Scholar 

  • Nazina T, Sokolova DS, Shestakova N et al (2005) The phylogenetic diversity of aerobic organotrophic bacteria from the Dagang high-temperature oil field. Microbiology 74:343–351

    CAS  Google Scholar 

  • Nazina TN, Shestakova NM, Semenova EM et al (2017) Diversity of metabolically active bacteria in water-flooded high-temperature heavy oil reservoir. Front Microbiol 8:707

    PubMed  PubMed Central  Google Scholar 

  • Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207

    Google Scholar 

  • Nikolova C, Gutierrez T (2020) Use of microorganisms in the recovery of oil from recalcitrant oil reservoirs: Current state of knowledge, technological advances and future perspectives. Front Microbiol 10:2996

    PubMed  PubMed Central  Google Scholar 

  • Nilsen RK, Beeder J, Thorstenson T, Torsvik T (1996) Distribution of thermophilic marine sulfate reducers in north sea oil field waters and oil reservoirs. Appl Environ Microbiol 62:1793–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsen RK, Torsvik T (1996a) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsen RK, Torsvik T, Lien T (1996b) Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Evol Microbiol 46:397–402

    Google Scholar 

  • Novelli G (1944) Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria. J Bacteriol 7:47–48

    Google Scholar 

  • Ollivier B, Cayol J (2005) Fermentative, iron-reducing, and nitrate‐reducing microorganisms. Pet Microbiol 71–88

  • Ommedal H, Torsvik T (2007) Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column. Int J Syst Evol Microbiol 57:2865–2869

    CAS  PubMed  Google Scholar 

  • Orphan V, Taylor L, Hafenbradl D, Delong E (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pannekens M, Kroll L, Müller H et al (2019) Oil reservoirs, an exceptional habitat for microorganisms. New Biotechnol 49:1–9

    CAS  Google Scholar 

  • Pannekens M, Voskuhl L, Meier A et al (2020) Densely populated water droplets in heavy-oil seeps. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00164-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Parthipan P, Elumalai P, Karthikeyan OP et al (2017) A review on biodegradation of hydrocarbon and their influence on corrosion of carbon steel with special reference to petroleum industry. J Environ Biotechnol Res 6:12–33

    Google Scholar 

  • Peixoto R, Vermelho A, Rosado A (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res. https://doi.org/10.4061/2011/475193

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham VD, Hnatow LL, Zhang S et al (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11:176–187

    CAS  PubMed  Google Scholar 

  • Phelps CD, Young L (1999) Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments. Biodegradation 10:15–25

    CAS  PubMed  Google Scholar 

  • Philippi G (1977) On the depth, time and mechanism of origin of the heavy to medium-gravity naphthenic crude oils. Geochim Cosmochim Acta 41:33–52

    CAS  Google Scholar 

  • Pley U, Schipka J, Gambacorta A et al (1991) Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110oC. Syst Appl Microbiol 14:245–253

    Google Scholar 

  • Plugge CM, Zhang W, Scholten J, Stams AJ (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Putra W, Hakiki F (2019) Microbial enhanced oil recovery: interfacial tension and biosurfactant-bacteria growth. J Pet Explor Prod Technol 9:2353–2374

    CAS  Google Scholar 

  • Qian Y, Xu M, Deng T et al (2021) Synergistic interactions of Desulfovibrio and Petrimonas for sulfate-reduction coupling polycyclic aromatic hydrocarbon degradation. J Hazard Mater 407:124385

    CAS  PubMed  Google Scholar 

  • Rajbongshi A, Gogoi SB (2020) A Review of Microbial Degradation of Petroleum Hydrocarbons. Adv Pet Technol 309–318

  • Ravenschlag K, Sahm K, Knoblauch C et al (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microbiol 66:3592–3602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravot G, Magot M, Fardeau M-L et al (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Evol Microbiol 45:308–314

    CAS  Google Scholar 

  • Rees GN, Grassia GS, Sheehy AJ et al (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Evol Microbiol 45:85–89

    Google Scholar 

  • Rees GN, Patel BK, Grassia GS, Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Evol Microbiol 47:150–154

    CAS  Google Scholar 

  • Risatti J, Capman W, Stahl D (1994) Community structure of a microbial mat: the phylogenetic dimension. Proc Natl Acad Sci 91:10173–10177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha CG, Zaia DAM, da Silva Alfaya RV, da Silva Alfaya AA (2009) Use of rice straw as biosorbent for removal of Cu (II), Zn (II), Cd (II) and Hg (II) ions in industrial effluents. J Hazard Mater 166:383–388

    CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    CAS  PubMed  Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL et al (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosnes JT, Torsvik T, Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl Environ Microbiol 57:2302–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rozanova E, Nazina T (1979) Occurrence of thermophilic sulfate-reducing bacteria in oil-bearing strata of Apsheron and Western Siberia. Microbiology 48:907–911

    Google Scholar 

  • Rozanova E, Tourova T, Kolganova T et al (2001) Desulfacinum subterraneumsp. Nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology 70:466–471

    CAS  Google Scholar 

  • Sarkar A, Goursaud J, Sharma M, Georgiou G (1989) A critical evaluation of MEOR processes. situ 13:207–238

    CAS  Google Scholar 

  • Sass H, Wieringa E, Cypionka H et al (1998) High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Arch Microbiol 170:243–251

    CAS  PubMed  Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci 34:714–724

    CAS  Google Scholar 

  • Shelton JL, Akob DM, McIntosh JC et al (2016) Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient. Front Microbiol 7:1535

    PubMed  PubMed Central  Google Scholar 

  • Sierra-Garcia IN, de Oliveira VM (2013) Microbial hydrocarbon degradation: efforts to understand biodegradation in petroleum reservoirs. Biodegrad-Eng Technol 10:55920

    Google Scholar 

  • Silva T, Verde L, Neto ES, Oliveira V (2013) Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields. Int Biodeterior Biodegrad 81:57–70

    CAS  Google Scholar 

  • Singer M, Finnerty W (1988) Construction of an Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. J Bacteriol 170:638–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    CAS  PubMed  Google Scholar 

  • So CM, Young LY (2001) Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions. Environ Toxicol Chem Int J 20:473–478

    CAS  Google Scholar 

  • Song H, Luo J, Wang Y et al (2010) Application of microbial oil recovery technology in Zichang Oilfield . J Xian Shiyou Univ Nat Sci Ed 4

  • Song W, Ma D, Zhu Y et al (2014) The role of sulphate-reducing bacteria in oil recovery. Int J Curr Microbiol Appl Sci 7:385–398

    Google Scholar 

  • Stadnitskaia A, Muyzer G, Abbas B et al (2005) Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar Geol 217:67–96

    CAS  Google Scholar 

  • Stetter KO, Huber R, Blöchl E et al (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745

    Google Scholar 

  • Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105oC. Syst Appl Microbiol 4:535–551

    CAS  PubMed  Google Scholar 

  • Sublette K, McInerney MJ, Montgomery AD, Bhupathiraju V (1994) Microbial oxidation of sulfides by Thiobacillus denitrificans for treatment of sour water and sour gases. Environmental Geochemistry of Sulfide Oxidation, ACS, pp 68–78

    Google Scholar 

  • Suthar H, Hingurao K, Desai A, Nerurkar A (2008) Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. J Microbiol Methods 75:225–230

    CAS  PubMed  Google Scholar 

  • Svetlichnyj V, Slesarev A, Svetlichnaya T, Zavarzin G (1987) Caldococcus litoralis gen. nov. sp. nov., une nouvelle bactérie marine extrêmement thermophile réduisant le soufre élémentaire. Mikrobiol Mosk 56:831–838

    Google Scholar 

  • Takahata Y, Hoaki T, Maruyama T (2001) Starvation survivability of Thermococcus strains isolated from Japanese oil reservoirs. Arch Microbiol 176:264–270

    CAS  PubMed  Google Scholar 

  • Tardy-Jacquenod C, Caumette P, Matheron R et al (1996a) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol 42:259–266

    CAS  PubMed  Google Scholar 

  • Tardy-Jacquenod C, Magot M, Laigret F et al (1996b) Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int J Syst Evol Microbiol 46:710–715

    CAS  Google Scholar 

  • Tardy-Jacquenod C, Magot M, Patel B et al (1998) Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Evol Microbiol 48:333–338

    Google Scholar 

  • Telang AJ, Jenneman GE, Voordouw G (1999) Sulfur cycling in mixed cultures of sulfide-oxidizing and sulfate-or sulfur-reducing oil field bacteria. Can J Microbiol 45:905–913

    CAS  Google Scholar 

  • Tobias C, Neubauer SC (2019) Salt marsh biogeochemistry—an overview. Coast Wetl 539–596

  • Townsend GT, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37:5213–5218

    CAS  PubMed  Google Scholar 

  • Uchiyama T, Ito K, Mori K et al (2010) Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76:1783–1788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich AC, Edwards EA (2003) Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environ Microbiol 5:92–102

    CAS  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    PubMed  PubMed Central  Google Scholar 

  • Wang LY, Duan RY, Liu JF et al (2012) Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences 9:4645–4659

    CAS  Google Scholar 

  • Wang Q, Jiang Y, Wang H et al (2020) Isolation and characterization of a marine bacterium Vibrio diabolicus strain L2-2 capable of biotransforming sulfonamides. Environ Res 188:109718

    CAS  PubMed  Google Scholar 

  • Ward DM, Brock T (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Kodama Y, Kaku N (2002) Diversity and abundance of bacteria in an underground oil-storage cavity. Bmc Microbiol 2:1–10

    Google Scholar 

  • Webster G, Watt LC, Rinna J et al (2006) A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate‐reducing marine sediment enrichment slurries. Environ Microbiol 8:1575–1589

    CAS  PubMed  Google Scholar 

  • Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. Handb Hydrocarb Lipid Microbiol, pp 1998–2022

  • Wilkinson T (1983) Offshore monitoring. Microb Corros 117–122

  • Windberger E, Huber R, Trincone A et al (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol 151:506–512

    CAS  Google Scholar 

  • Xiu J, Yu L, Zheng C (2010) Application of microbial community structure analysis in microbial enhanced oil recovery. Oil-Gas Field Surf Eng 29:48–50

    Google Scholar 

  • Yen T (1986) State of the Art Review on Microbial Enhanced Oil Recovery. Univ South Calif NSF OIR–8405134 Los Angel Calif

  • Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    CAS  Google Scholar 

  • Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141–251

    CAS  PubMed  Google Scholar 

  • Zajic JE, Cooper D, Kosaric N (1983) Microbial enhanced oil recovery. United States

  • Zengler K, Richnow HH, Rosselló-Mora R et al (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    CAS  PubMed  Google Scholar 

  • Zhang D, Cui L, Madani R et al (2019) Effect of nitrite and nitrate on sulfate reducing ammonium oxidation. Water Sci Technol 80:634–643

    CAS  PubMed  Google Scholar 

  • Zhang S, Wang Q, Xie S (2012) Stable isotope probing identifies anthracene degraders under methanogenic conditions. Biodegradation 23:221–230

    PubMed  Google Scholar 

  • Zhang X, Young L (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63:4759–4764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Sheng Y, Wang C et al (2018) In situ microbial remediation of crude oil-soaked marine sediments using zeolite carrier with a polymer coating. Mar Pollut Bull 129:172–178

    CAS  PubMed  Google Scholar 

  • Zhao H, Wood AG, Widdel F, Bryant MP (1988) An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid. Arch Microbiol 150:178–183

    CAS  Google Scholar 

  • Zhao Y, Zhang H, Boone DR, Mah RA (1986) Isolation and characterization of a fast-growing, thermophilic Methanobacterium species. Appl Environ Microbiol 52:1227–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Wu B, Dong X, He S (2015) Effect of Nutrient Supply on the Production of Soluble Microbial Products (SMP) in Anaerobic Reactors. Fermentol Techno 1:2

    Google Scholar 

  • Zillig W, Holz I, Janekovic D et al (1983) The archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94

    CAS  PubMed  Google Scholar 

  • Zillig W, Holz I, Klenk H-P et al (1987) Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst Appl Microbiol 9:62–70

    CAS  Google Scholar 

  • Zobell CE (1946) Bacteriological process for treatment of fluid-bearing earth formations. United States Patent Office, No. 2,413,278

Download references

Funding

This work was funded by the Department of Biotechnology, Government of India in the form of Joint R&D activities under the twinning programme for scientists working in Dibrugarh University and IIT-Kharagpur in the form of a Twinning project no. DBT ENV/2013/222 (Twin 2013).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AR, SBG; Methodology: SBG, AR; Formal analysis and investigation: SBG, AR; Writing - original draft preparation: AR; Writing - review and editing: AR, SBG; Funding acquisition: SBG; Resources: AR; Supervision: SBG

Corresponding author

Correspondence to Amarjit Rajbongshi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajbongshi, A., Gogoi, S.B. A review on anaerobic microorganisms isolated from oil reservoirs. World J Microbiol Biotechnol 37, 111 (2021). https://doi.org/10.1007/s11274-021-03080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03080-9

Keywords

Navigation