Skip to main content
Log in

Identification and characterization of Populus microRNAs in response to plant growth-promoting endophytic Streptomyces sp. SSD49

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Endophytic Streptomyces sp. SSD49 inhibited eight pathogens, including the human opportunistic pathogenic microorganisms, the plant pathogenic fungi and bacteria. The growth of soybeans, tomatoes, peppers and Populus tomentosa seedings inoculated with SSD49 are remarkably promoted. Here, we constructed two P. tomentosa seedling microRNA (miRNA) libraries inoculated with (PS30d) and without SSD49 (PC30d) to explore the molecular regulatory roles in the plant response to the beneficial bacteria. Totals of 314 known and 144 novel miRNAs were identified, among which 27 known and 11 novel miRNA had significantly different expression. The targets of up-regulated miR160, miR156, ptc114 and down-regulated miR319 and other differential expressed miRNAs primarily regulated genes encoding transcription factors (auxin response factor, small auxin-up RNA, and GRAS proteins), disease resistance proteins, phytohormone oxidase, and response regulators, which could promote plant growth, influence disease resistance and miRNA biosynthesis in P. tomentosa. This is the first report on the genome-wide identification of biocontrol endophytic Streptomyces inoculation-responsive miRNAs using small RNA sequencing in P. tomentosa and these findings provide new insight into understanding the biocontrol effects of endophytic Streptomyces.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221

    Article  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  Google Scholar 

  • Aung B, Gruber MY, Amyot L, Omari K, Bertrand A, Hannoufa A (2015) MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotechnol J 13(6):779–790

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    Article  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(SI):154–158

    Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132

    Article  CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  Google Scholar 

  • Han J, Xie H, Sun Q, Wang J, Lu M, Wang W, Guo E, Pan J (2014) Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setariaitalica). Gene 546:367–377

    Article  CAS  Google Scholar 

  • Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, Barakat A, Sunkar R (2016) Characterization of drought-and heat-responsive microRNAs in switchgrass. Plant Sci 242(SI):214–223.

    Google Scholar 

  • June RR, Aggarwal R (2014) The Use and Abuse of Diagnostic/Classification Criteria. Best Pract Res Clin Rheumatol 28(6):921

    Article  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:109–114

    Article  Google Scholar 

  • Kong Y, Zhu Y, Gao C, She W, Lin W, Chen Y, Han N, Bian H, Zhu M, Wang J (2013) Tissue-specific expression of SMALL AUXIN UPRNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant Cell Physiol 54(4):609–621

    Article  CAS  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714

    Article  CAS  Google Scholar 

  • Liu Q, Wang H, Hu H, Zhang H (2015) Genome-wide identification and evolutionary analysis of positively selected miRNA genes in domesticated rice. Mol Genet Genomics 290(2):593–602

    Article  CAS  Google Scholar 

  • Liu X, Dou G, Ma Y (2016) Potential of endophytes from medicinal plants for biocontrol and plant growth promotion. J Gen Plant Pathol 82(3):165–173

    Article  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17(8):2186–2203

    Article  CAS  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55(395):181–188

    Article  CAS  Google Scholar 

  • Man MZ, Wang X, Wang Y (2000) POWER_SAGE: comparing statistical tests for SAGE experiments. Bioinformatics 16(11):953–959

    Article  CAS  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288(5):911–940

    Article  CAS  Google Scholar 

  • McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT (2013) Applications of next generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66:526–538

    Article  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20(12):3186–3190

    Article  CAS  Google Scholar 

  • Morozova O, Marra M (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5(10):922–926

    Article  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263

    Article  CAS  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2013) Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing. Biochimie 95(4):743–750

    Article  CAS  Google Scholar 

  • Rossi M, Trupiano D, Tamburro M, Ripabelli G, Montagnoli A, Chiatante D, Scippa GS (2015) MicroRNAs expression patterns in the response of poplar woody root to bending stress. Planta 242(1):339–351

    Article  CAS  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527

    Article  CAS  Google Scholar 

  • Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233

    Article  CAS  Google Scholar 

  • Sjödin A, Street NR, Sandberg G, Gustafsson P, Jansson S (2009) The Populus genome integrative explorer (PopGenIE): a new resource for exploring the Populus genome. New Phytol 182(4):1013–1025

    Article  Google Scholar 

  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26(4):1792–1807

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604.

    Article  CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  Google Scholar 

  • Wang JJ, Guo HS (2015) Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulatesauxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. Plant Cell 27(3):574–590

    Article  CAS  Google Scholar 

  • Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ (2010) MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol plant 3(5):794–806

    Article  Google Scholar 

  • Xu Z, Ji A, Song J, Chen S (2016) Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza. Biol Open 5(6):848–857

    Article  CAS  Google Scholar 

  • Yadav A, Khan Y, Prasad M (2016) Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. Planta 243(3):749–766

    Article  CAS  Google Scholar 

  • Yin Z, Ke X, Huang D, Gao X, Voegele RT, Kang Z, Huang L (2013). Validation of reference genes for gene expression analysis in Valsa mali var. mali using real-time quantitative PCR. World J Microbiol Biotechnol 29(9):1563-1571.

    Article  CAS  Google Scholar 

  • Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS (2010) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38:1382–1391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities (2017ZY14, 2016JX03), the National Science and Technology Ministry (2012BAC09B03), the National Natural Science Foundation of China (J1310005) and the Beijing Nova Program (2011033). We thank Prof. Wei He for the contribution of D. gregaria, B. dothidea CFCC 7926/7897 and L. quercina subsp. populi; Prof. Shidong Li for C. parasitica, S. sclerotiorum and P. capsici; and Prof. Deqiang Zhang for P. tomentosa tissue culture seedlings. We thank the professional Scientific and Technical Editing Service (https://www.textcheck.com/text/page/about) for the edition of the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YM conceived and designed the experiments. YG, XL and GD conducted experiments and analyzed data. WT and YG wrote the manuscript and should be as the first co-authors. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yuchao Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Ge, Y., Liu, X. et al. Identification and characterization of Populus microRNAs in response to plant growth-promoting endophytic Streptomyces sp. SSD49. World J Microbiol Biotechnol 35, 97 (2019). https://doi.org/10.1007/s11274-019-2671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2671-4

Keywords

Navigation