Skip to main content
Log in

Enzymatic gene expression by Pleurotus tuoliensis (Bailinggu): differential regulation under low temperature induction conditions

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pleurotus tuoliensis is a valuable, rare and edible mushroom that is been commercially cultivated and is rapidly developing in China markets. Low temperatures are required to induces primordia initiation for the successful production of fruiting bodies (basidiomes) during commercial cultivation. In this work, we investigated the enzymatic activities and performed transcription profiling analysis of enzymatic genes under different low temperature conditions. The results suggest that the enzymatic activities and transcription levels decrease or increase significantly at 4 and 13 °C. Lacc10 and mnp6 seems to play a dominant role during nutrition growth. Furthermore, the expression of laccase and peroxidase genes was highly correlated to the detected extracellular enzymatic activity. Cold stress genes expression profiles were upregulated under 4 °C/13 °C (3 days), while only the Hsp70 gene was downregulated (at the stage of fruiting bodies production) at 13 °C (12 days). Our results showed that the transcriptional regulation of laccase and ligninolytic peroxidase genes plays an important role in the fruiting bodies of Bailinggu under low temperature induction (4 °C). Induction at low temperatures was a highly important cultivation condition in Bailinggu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated and analysed during this study are included in this published article. All model transcripts sequences were available in the JGI (https://jgi.doe.gov/).

Abbreviations

POD:

Peroxidase

PPO:

Polyphenol oxidase

CAT:

Catalase

SOD:

Superoxide dismutase

FC:

Fold change

References

  • Alonsomonge R, Navarrogarcia F, Roman E, Negredo AI, Eisman B, Nombela C, Pla J (2003) The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2:351–361

    Article  CAS  Google Scholar 

  • Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bose S, Mazumder S, Mukherjee M (2007) Laccase production by the white-rot fungus Termitomyces clypeatus. J Basic Microbiol 47:127–131. https://doi.org/10.1002/jobm.200610206

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Oday PA, Rivera N, Mueller KT, Vairavamurthy MA, Seraphin S, Chorover J (2006) Strontium speciation during reaction of kaolinite with simulated tank-waste leachate: bulk and microfocused EXAFS analysis. Environ Sci Technol 40:2608–2614

    Article  CAS  Google Scholar 

  • Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biot 58:582–594

    Article  CAS  Google Scholar 

  • Der Agopian RG et al (2011) Low temperature induced changes in activity and protein levels of the enzymes associated to conversion of starch to sucrose in banana fruit. Postharvest Biol Technol 62:133–140

    Article  Google Scholar 

  • Dhakar K, Jain R, Tamta S, Pandey A (2014) Prolonged laccase production by a cold and pH tolerant strain of Penicillium pinophilum (MCC 1049) Isolated from a low temperature environment. Enzyme Res 2014:120708–120708

    Article  Google Scholar 

  • Die JV, Rowland LJ (2014) Elucidating cold acclimation pathway in blueberry by transcriptome profiling. Environ Exp Bot 106:87–98

    Article  CAS  Google Scholar 

  • Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T, Kvesitadze G (2008) Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99:457–462

    Article  CAS  Google Scholar 

  • Fernandezfueyo E et al (2012) Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci USA 109:5458–5463

    Article  CAS  Google Scholar 

  • Fernandezfueyo E, Castanera R, Ruizduenas FJ, Lopezlucendo M, Ramirez L, Pisabarro AG, Martinez AT (2014a) Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol 72:150–161

    Article  CAS  Google Scholar 

  • Fernandezfueyo E, Ruizduenas FJ, Martinez MJ, Romero A, Hammel KE, Medrano FJ, Martinez AT (2014b) Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnol Biofuels 7:2–2

    Article  Google Scholar 

  • Floudas D et al (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31. Fungal Genomes Sci 336:1715–1719

    CAS  Google Scholar 

  • Fu Y et al (2016) De novo sequencing and transcriptome analysis of Pleurotus eryngii subsp. tuoliensis (Bailinggu) mycelia in response to cold stimulation. Molecules 21:560

    Article  Google Scholar 

  • Ghildiyal A, Pandey A (2008) Isolation of cold tolerant antifungal strains of Trichoderma sp. from glacial sites of Indian Himalayan region. Res J Microbiol 3(8):559–564

    Article  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez AI, Barcelo AR, Sevilla F (2001) Antioxidant systems and O2–/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  CAS  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511

    Article  CAS  Google Scholar 

  • Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13:771–781

    Article  CAS  Google Scholar 

  • Kawai G, Babasaki K, Neda H (2008) Taxonomic position of a Chinese Pleurotus “Bai-Ling-Gu”: it belongs to Pleurotus eryngii (DC.: Fr.) Quél. and evolved independently in China. Mycoscience 49:75–87

    Article  CAS  Google Scholar 

  • Kim I, Moon H, Yun H, Jin I (2006) Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377. J Microbiol 44:492–501

    CAS  PubMed  Google Scholar 

  • Kim H, Lee C, Park Y (2016) Further characterization of hydrophobin genes in genome of Flammulina velutipes. Mycoscience 57:320–325

    Article  Google Scholar 

  • Kisoka FP, Mtui G, Mshandete AM, Kivaisi AK (2014) Ligninolytic enzymes activities of Pleurotus sapidus P969 during vegetative growth and fruit development on sugarcane residues-based substrates. Int J Biotechnol 3:58–71

    Google Scholar 

  • Kong W, Huang C, Chen Q, Zou Y, Zhang J (2012) Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genet Biol 49:15

    Article  CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Article  Google Scholar 

  • Lefevre G, Beljeanleymarie M, Beyerle F, Bonnefontrousselot D, Cristol JP, Therond P, Torreilles J (1998) Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances. Ann Biol Clin 56:305

    CAS  Google Scholar 

  • Li R, Wang Y, Hu W, Liao X (2014) Changes in the activity, dissociation, aggregation, and the secondary and tertiary structures of a thaumatin-like protein with a high polyphenol oxidase activity induced by high pressure CO2. Innov Food Sci Emerg Technol 23:68–78

    Article  CAS  Google Scholar 

  • Lin J, Sharma V, Milase R, Mbhense N (2016) Simultaneous enhancement of phenolic compound degradations by acinetobacter strain V2 via a step-wise continuous acclimation process. J Basic Microbiol 56:627–634. https://doi.org/10.1002/jobm.201500263

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Zhao J, Gan Z, Ni Y (2015) Comparison of membrane-bound and soluble polyphenol oxidase in Fuji apple (Malus domestica Borkh. cv. Red Fuji). Food Chem 173:86

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lu P, Sang W, Ma K (2007) Activity of stress-related antioxidative enzymes in the invasive plant crofton weed (Eupatorium adenophorum). J Integr Plant Biol 49:1555–1564

    Article  CAS  Google Scholar 

  • Lv H et al (2009) Nebrodeolysin, a novel hemolytic protein from mushroom Pleurotus nebrodensis with apoptosis-inducing and anti-HIV-1 effects. Phytomedicine 16:198

    Article  CAS  Google Scholar 

  • Maki H, Morohashi Y (2006) Development of polyphenol oxidase activity in the micropylar endosperm of tomato seeds. J Plant Physiol 163:1

    Article  CAS  Google Scholar 

  • Martinez D et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    Article  CAS  Google Scholar 

  • Miyazawa N, Okazaki M, Ohga S (2008) Antihypertensive effect of Pleurotus nebrodensis in spontaneously hypertensive rats. J Oleo Sci 57:6

    Google Scholar 

  • Miyazawa N, Tomita N, Kurobayashi Y, Nakanishi A, Ohkubo Y, Maeda T, Fujita A (2009) Novel character impact compounds in Yuzu (Citrus junos Sieb. ex Tanaka) peel oil. J Agr Food Chem 57:1990–1996

    Article  CAS  Google Scholar 

  • Moiseenko KV, Maloshenok LG, Vasina DV, Bruskin SA, Tyazhelova TV, Koroleva OV (2016) Laccase multigene families in Agaricomycetes. J Basic Microbiol. https://doi.org/10.1002/jobm.201600224

    Article  PubMed  Google Scholar 

  • Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2015) Enhanced functionality and stabilization of a cold active laccase using nanotechnology based activation-immobilization. Biores Technol 179:573

    Article  CAS  Google Scholar 

  • Munoz C, Guillen F, Martinez AT, Martinez MJ (1997) Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microb 63:2166–2174

    CAS  Google Scholar 

  • Pandey A, Palni LMS, Bisht D (2001) Dominant fungi in the rhizosphere of established tea bushes and their interaction with the dominant bacteria under in situ conditions. Microbiol Res 156:377

    Article  CAS  Google Scholar 

  • Pandey A, Das N, Kumar B, Rinu K, Trivedi P (2008) Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World J Microb Biot 24:97

    Article  CAS  Google Scholar 

  • Perez J, Munozdorado J, La Rubia TD, Martinez JC (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  CAS  Google Scholar 

  • Pezzella C, Lettera V, Piscitelli A, Giardina P, Sannia G (2012) Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl Microbiol Biot 97:705–717

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Prasad TK (1997) Role of catalase in inducing chilling tolerance in pre-emergent Maize seedlings. Plant Physiol 114:1369

    Article  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in Maize seedlings and a regulatory role for hydrogen peroxide. Plant cell 6:65–74

    Article  CAS  Google Scholar 

  • Rinu K, Pandey A (2010a) Slow and steady phosphate solubilization by a psychrotolerant strain of Paecilomyces hepiali (MTCC 9621). World J Microbiol Bioltechnol 27:1055–1062

    Article  Google Scholar 

  • Rinu K, Pandey A (2010b) Temperature-dependent phosphate solubilization by cold- and pH-tolerant species of Aspergillus isolated from Himalayan soil. Mycoscience 51:263–271

    Article  CAS  Google Scholar 

  • Ruizduenas FJ, Guillen F, Camarero S, Perezboada M, Martinez MJ, Martinez AT (1999) Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microb 65:4458–4463

    CAS  Google Scholar 

  • Ruizduenas FJ, Lundell T, Floudas D, Nagy L, Barrasa JM, Hibbett DS, Martinez AT (2013) Lignin-degrading peroxidases in polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105:1428–1444

    Article  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Martinez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnol 2:164–177. https://doi.org/10.1111/j.1751-7915.2008.00078.x

    Article  CAS  Google Scholar 

  • Saeki N, Takeda H, Tanesaka E, Yoshida M (2011) Induction of manganese peroxidase and laccase by Lentinula edodes under liquid culture conditions and their isozyme detection by enzymatic staining on native-PAGE. Mycoscience 52:132–136

    Article  CAS  Google Scholar 

  • Salame TM, Yarden O, Hadar Y (2010) Pleurotus ostreatus manganese-dependent peroxidase silencing impairs decolourization of Orange II. Microbial Biotechnol 3:93–106

    Article  CAS  Google Scholar 

  • Skyba M, Petijova L, Kosuth J, Koleva D, Ganeva T, Kapchinatoteva V, Cellarova E (2012) Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment. J Plant Physiol 169:955–964

    Article  CAS  Google Scholar 

  • Sooknanan R, Malek L, Wang XH, Siebert T, Keating A (1993) Detection and direct sequence identification of BCR-ABL mRNA in Ph + chronic myeloid leukemia. Exp Hematol 21:1719–1724

    CAS  PubMed  Google Scholar 

  • Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13:11643

    Article  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19:65–96

    CAS  PubMed  Google Scholar 

  • Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I (2002) Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1:163–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Lucía Ramírez from Centro de Investigaciones Biológicas (Spain) for his friendly work on the English editing and modification.

Funding

This study was supported by the National Natural Science Foundation of China (31471926).

Author information

Authors and Affiliations

Authors

Contributions

SH was responsible for all experiment work and performed the statistical analysis. YL participated in the design of the study. BZ, BQ, YPF, YSL and FHT collected most of the material and cultivated strains. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, S., Zhang, B., Fu, Y. et al. Enzymatic gene expression by Pleurotus tuoliensis (Bailinggu): differential regulation under low temperature induction conditions. World J Microbiol Biotechnol 34, 160 (2018). https://doi.org/10.1007/s11274-018-2487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2487-7

Keywords

Navigation