Skip to main content
Log in

Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The action of metabolites and exoenzymes from rhizobacteria on different plant-parasitic nematodes has an influence on the nematicidal efficacy of the microbe. Seven rhizobacteria, divided into two bacterial groups, were evaluated in vitro for nematicidal activity on Meloidogyne ethiopica and Xiphinema index. The direct effect of their filtrates on egg hatching and juveniles of M. ethiopica as well as mobile stages of X. index was evaluated during a 72-h period. The production of four exoenzymes and two metabolites associated with nematode mortality was investigated. Molecular characterization of three isolates was performed, and the physiological profiles and lipase activity of all isolates were obtained using the BIOLOG EcoPlate system. While chitinase and collagenase were measured using the BIOLOG MT2 plate system, protease, hydrogen cyanide and hydrogen sulphide were directly determined in Petri dishes. Nematode mobile stages exposure to the bacterial filtrate revealed a nematicidal effect up to 93.7% on X. Index and up to 83.3% on M. ethiopica. The control of egg hatching varied between 35 and 85%. A positive correlation was found between the mortality of both nematode mobile stages and the concerted activities of the bacterial enzymes as well as the level of the volatile metabolites. The nematicidal effect of rhizobacteria strains varies by nematode genera and among the developmental stages evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abad P, Gouzy J, Aury J-M et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915. doi:10.1038/nbt.1482

    Article  CAS  Google Scholar 

  • Aballay E, Merino C (2015) Efficacy and crop tolerance of 1,3-dichloropropene applied at low rates in established vineyards for the control of plant-parasitic nematodes. Crop Prot 78:78–83. doi:10.1016/j.cropro.2015.08.009

    Article  CAS  Google Scholar 

  • Aballay E, Martensson A, Persson P (2011) Screening of rhizosphere bacteria from grapevine for their suppressive effect on Xiphinema index Thorne & Allen on in vitro grape plants. Plant Soil 347:313–325. doi:10.1007/s11104-011-0851-6

    Article  CAS  Google Scholar 

  • Aballay E, Prodan S, Martensson A, Persson P (2012) Assessment of rhizobacteria from grapevine for their suppressive effect on the parasitic nematode Xiphinema index. Crop Prot 42:36–41. doi:10.1016/j.cropro.2012.08.013

    Article  Google Scholar 

  • Aballay E, Ordenes P, Mårtensson A, Persson P (2013) Effects of rhizobacteria on parasitism by Meloidogyne ethiopica on grapevines. Eur J Plant Pathol 135:137–145. doi:10.1007/s10658-012-0073-7

    Article  CAS  Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61. doi:10.1016/j.sjbs.2012.10.004

    Article  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol Biol 35:1044–1051

    CAS  Google Scholar 

  • Bird AF, Bird J (1991) The egg. The structure of nematodes, 2nd edn. Elsevier, London, pp 7–43

    Book  Google Scholar 

  • Bloem E, Haneklaus S, Kesselmeier J, Schnug E (2012) Sulfur fertilization and fungal infections affect the exchange of H2S and COS from agricultural crops. J Agric Food Chem 60:7588–7596. doi:10.1021/jf301912h

    Article  CAS  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177. doi:10.1007/s002039900127

    Article  CAS  Google Scholar 

  • Brown DJ, Boag B (1988) An examination of methods used to extract virus-vector nematodes (nematoda: longidoridae and trichodoridae) from soil samples. Nematol Mediterr 16:93–99.

    Google Scholar 

  • Burkett-Cadena M, Kokalis-Burelle N, Lawrence KS et al (2008) Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biol Control 47:55–59. doi:10.1016/j.biocontrol.2008.07.008

    Article  Google Scholar 

  • Calderwood A, Kopriva S (2014) Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide Biol Chem 41:72–78. doi:10.1016/j.niox.2014.02.005

    Article  CAS  Google Scholar 

  • Castaneda-Alvarez C, Prodan S, Rosales IM, Aballay E (2016) Exoenzymes and metabolites related to the nematicidal effect of rhizobacteria on Xiphinema index Thorne & Allen. J Appl Microbiol 120:413–424. doi:10.1111/jam.12987

    Article  CAS  Google Scholar 

  • Collange B, Navarrete M, Peyre G et al (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262. doi:10.1016/j.cropro.2011.04.016

    Article  Google Scholar 

  • Costa SR, Kerry BR, Bardgett RD, Davies KG (2012) Interactions between nematodes and their microbial enemies in coastal sand dunes. Oecologia 170:1053–1066. doi:10.1007/s00442-012-2359-z

    Article  Google Scholar 

  • Curtis RHC, Jones JT, Davies KG et al (2011) Plant nematode surfaces. In: Davies K, Spiegel Y (eds) Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms, progress in biological control. Springer, Dordrecht, p 311

    Google Scholar 

  • Decraemer W, Hunt DJ (2006) Structure and Classification. In: Perry RN, Moens M (eds) Plant Nematology, 2nd edn. CABI, Wallingford, p 447

    Google Scholar 

  • dos Santos LF, Defrenne L, Krebs-Brown A (2002) Comparison of three microbial assay procedures for measuring toxicity of chemical compounds: ToxAlert®10, CellSense and Biolog MT2 microplates. Anal Chim Acta 456:41–54. doi:10.1016/S0003-2670(01)00907-2

    Article  Google Scholar 

  • Fiore N, Zamorano A, Rivera L et al (2011) Grapevine viruses in the Atacama region of Chile. J Phytopathol 159:743–750. doi:10.1111/j.1439-0434.2011.01834.x

    Article  CAS  Google Scholar 

  • Galper S, Cohn E, Chet I (1990) Nematicidal effect of collagen-amended soil and the influence of protease and collagenase. Rev Nematol 13:67–71.

    CAS  Google Scholar 

  • Gelsomino R, Vancanneyt M, Vandekerckhove TM, Swings J (2004) Development of a 16 S rRNA primer for the detection of Brevibacterium spp. Lett Appl Microbiol 38:532–535. doi:10.1111/j.1472-765X.2004.01533.x

    Article  CAS  Google Scholar 

  • Helgason E, Tourasse NJ, Meisal R et al (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201. doi:10.1128/AEM.70.1.191-201.2004

    Article  CAS  Google Scholar 

  • Herrera-Estrella A, Chet I (1999) Chitinases in biological control. In: Jollès P, Muzzarelli RAA (eds) Chitin and Chitinases. Birkhauser, Basel, pp 171–184

    Chapter  Google Scholar 

  • Heyrman J (2005) Study of mural painting isolates, leading to the transfer of “Bacillus maroccanus” and “Bacillus carotarum” to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to “Bacillus macroides” and descr. Int J Syst Evol Microbiol 55:119–131. doi:10.1099/ijs.0.63221-0

    Article  CAS  Google Scholar 

  • Huettel R, Rebois R (1985) Culturing plant parasitic nematodes using root explants. In: Zuckerman BM, Mai MBH WF (eds) Plant nematology: laboratory manual. University Of Massachusetts Agricultural Experiment Station, Amherst, pp 155–158

  • Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Report 57:1025–1028.

    Google Scholar 

  • Ki JS, Zhang W, Qian PY (2009) Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J Microbiol Methods 77:48–57. doi:10.1016/j.mimet.2009.01.003

    Article  CAS  Google Scholar 

  • Kloepper JW, Rodríguez-Kábana R, McInroy JA, Collins DJ (1991) Analysis of populations and physiological characterization of microorganisms in rhizospheres of plants with antagonistic properties to phytopathogenic nematodes. Plant Soil 136:95–102. doi:10.1007/BF02465224

    Article  Google Scholar 

  • Ko KS, Kim JW, Kim JM et al (2004) Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR Gene. Infect Immun 72:5253–5261. doi:10.1128/IAI.72.9.5253

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16 S/23 S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics, 1st edn. Wiley, New York, pp 115–175

    Google Scholar 

  • Lane J, Pace B, Olsen GJ et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  CAS  Google Scholar 

  • Lechner S, Mayr R, Francis KP et al (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48(Pt 4):1373–1382

    Article  CAS  Google Scholar 

  • Lian LH, Tian BY, Xiong R et al (2007) Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett Appl Microbiol 45:262–269. doi:10.1111/j.1472-765X.2007.02184.x

    Article  CAS  Google Scholar 

  • Lopez-Llorca LV, Maciá-Vicente JG, Jansson H-B (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Intregated management and biocontrol or vegetable and grain crops nematodes. Springer, Berlin, p 356

    Google Scholar 

  • Ma L, Fu W, Huang Y et al (2012) A strategy to discover potential nematicidal fumigants based on toxic volatiles from nematicidal bacteria. African J Microbiol Res 6:6106–6113. doi:10.5897/AJMR12.1328

    CAS  Google Scholar 

  • Manzano M, Cocolin L, Cantoni C, Comi G (2003) Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides differentiation using a PCR-RE technique. Int J Food Microbiol 81:249–254. doi:10.1016/S0168-1605(02)00222-2

    Article  CAS  Google Scholar 

  • Marchi M, Boutin M, Gazengel K, et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep 5:393–403. doi:10.1111/1758-2229.12048

    Article  CAS  Google Scholar 

  • McBride RS, Edwards JD (1914) The lead acetate test for hydrogen sulphide in gas. J Franklin Inst 178:639–642. doi:10.1016/S0016-0032(14)90280-0

    Article  Google Scholar 

  • McSorley R, Wang K, Kokalis-Burelle N, Church G (2006) Effects of soil type and steam on nematode biological control potential of the rhizosphere community. Nematropica 36:197–214.

    Google Scholar 

  • McSorley R, Wang K-H, Church G (2008) Suppression of root-knot nematodes in natural and agricultural soils. Appl Soil Ecol 39:291–298. doi:10.1016/j.apsoil.2008.01.002

    Article  Google Scholar 

  • Millar RL, Higgins VJ (1970) Association of Cyanide with Infection of birdsfoot trefoil by Stemphylium loti. Phytopathology 60:104. doi:10.1094/Phyto-60-104

    Article  CAS  Google Scholar 

  • Mnif I, Ghribi D (2015) Potential of bacterial derived biopesticides in pest management. Crop Prot 77:52–64. doi:10.1016/j.cropro.2015.07.017

    Article  Google Scholar 

  • Morgulis A, Coulouris G, Raytselis Y et al (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24:1757–1764. doi:10.1093/bioinformatics/btn322

    Article  CAS  Google Scholar 

  • Omarjee J, Balandreau J, Spaull VW, Cadet P (2008) Relationships between Burkholderia populations and plant parasitic nematodes in sugarcane. Appl Soil Ecol 39:1–14. doi:10.1016/j.apsoil.2007.11.001

    Article  Google Scholar 

  • Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot 26:971–977. doi:10.1016/j.cropro.2006.09.004

    Article  Google Scholar 

  • Paiva G, Proença DN, Francisco R et al (2013) Nematicidal bacteria associated to pinewood nematode produce extracellular proteases. PLoS ONE 8:e79705. doi:10.1371/journal.pone.0079705

    Article  CAS  Google Scholar 

  • Radwan MA, Farrag SAA, Abu-Elamayem MM, Ahmed NS (2012) Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Appl Soil Ecol 56:58–62. doi:10.1016/j.apsoil.2012.02.008

    Article  Google Scholar 

  • Ray C, Hussey RS (1995) Evidence for proteolytic processing of a cuticle collagen in a plant-parasitic nematode. Mol Biochem Parasitol 72:243–246

    Article  CAS  Google Scholar 

  • Rodriguez-Kabana R, Jordan JW, Hollis JP (1965) Nematodes: biological control in rice fields: role of hydrogen sulfide. Science (80-) 148:524–526. doi:10.1126/science.148.3669.524

    Article  CAS  Google Scholar 

  • Romanowski A, Migliori ML, Valverde C, Golombek D a (2011) Circadian variation in Pseudomonas fluorescens (CHA0)-mediated paralysis of Caenorhabditis elegans. Microb Pathog 50:23–30. doi:10.1016/j.micpath.2010.09.001

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:10.1093/oxfordjournals.molbev.a040454

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33. doi:10.1016/j.soilbio.2015.04.001

    Article  CAS  Google Scholar 

  • Schenborn ET, Mierendorf RC (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236

    Article  CAS  Google Scholar 

  • Selvakumar G, Sushil SN, Stanley J, et al (2011) Brevibacterium frigoritolerans a novel entomopathogen of Anomala dimidiata and Holotrichia longipennis (Scarabaeidae: Coleoptera). Biocontrol Sci Technol 21:821–827. doi:10.1080/09583157.2011.586021

    Article  Google Scholar 

  • Siddiqui IA (2000) Effects of cell suspension and cell-free culture filtrate of Pseudomonas aeruginosa in the control of root rot-root knot disease complex of tomato (Lycopersicon esculentum Mill.). Acta Agrobot 53:47–55.

    Article  Google Scholar 

  • Siddiqui Z a., Akhtar MS (2009) Effect of plant growth promoting rhizobacteria, nematode parasitic fungi and root-nodule bacterium on root-knot nematodes Meloidogyne javanica and growth of chickpea. Biocontrol Sci Technol 19:511–521. doi:10.1080/09583150902887792

    Article  Google Scholar 

  • Siddiqui IA, Shaukat S (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623. doi:10.1016/j.soilbio.2003.08.006

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS, Khan GH, Ali NI (2003) Suppression of Meloidogyne javanica by Pseudomonas aeruginosa IE-6S+ in tomato: the influence of NaCl, oxygen and iron levels. Soil Biol Biochem 35:1625–1634. doi:10.1016/j.soilbio.2003.08.007

    Article  CAS  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649. doi:10.1128/AEM.71.9.5646-5649.2005

    Article  CAS  Google Scholar 

  • Sikorski J, Nevo E (2007) Patterns of thermal adaptation of Bacillus simplex to the microclimatically contrasting slopes of “Evolution Canyons” I and II, Israel. Environ Microbiol 9:716–726. doi:10.1111/j.1462-2920.2006.01193.x

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, p 791

    Google Scholar 

  • Soufiane B, Côté J-C (2013) Bacillus weihenstephanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. FEMS Microbiol Lett 341:127–137. doi:10.1111/1574-6968.12106

    Article  CAS  Google Scholar 

  • Stirling GR (2014) Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture. CABI, Wallingford

    Book  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035. doi:10.1073/pnas.0404206101

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208. doi:10.1089/ind.2006.2.194

    Article  Google Scholar 

  • Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson H-B (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78. doi:10.1006/fgbi.2001.1312

    Article  CAS  Google Scholar 

  • Wei L, Shao Y, Wan J et al (2014) Isolation and characterization of a rhizobacterial antagonist of root-knot nematodes. PLoS ONE 9:e85988. doi:10.1371/journal.pone.0085988

    Article  Google Scholar 

  • Xu D, Coté J-C (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3’ end 16S rDNA and 5’ end 16S-23S ITS nucleotide sequences. Int J Syst Evol Microbiol 53:695–704. doi:10.1099/ijs.0.02346-0

    Article  CAS  Google Scholar 

  • Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109

    CAS  Google Scholar 

  • Zhang S, Gan Y, Xu B, Xue Y (2014) The parasitic and lethal effects of Trichoderma longibrachiatum against Heterodera avenae. Biol Control 72:1–8. doi:10.1016/j.biocontrol.2014.01.009

    Article  Google Scholar 

  • Zhou T, Chen D, Li C et al (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394. doi:10.1016/j.micres.2012.01.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FONDEF of CONICYT, Chile for funding support through the D10I1006 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Aballay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or vertebrate animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aballay, E., Prodan, S., Zamorano, A. et al. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol 33, 131 (2017). https://doi.org/10.1007/s11274-017-2303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2303-9

Keywords

Navigation