Skip to main content
Log in

Elucidating and engineering thiopeptide biosynthesis

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Initially discovered in the mid-twentieth century, thiopeptides constitute a diverse family of bacterially produced natural products exhibiting a remarkable array of biological properties. Only in the last several years have the details of thiopeptide biosynthesis been uncovered by a combination of genomic, genetic, and biochemical approaches. Thiopeptides are now known to be ribosomally synthesized and subsequently densely modified to carry azol(in)es, dehydro amino acids, and various other pathway-specific decorations. The defining feature of thiopeptides is a central six-membered nitrogenous ring that constrains peptide macrocycles of varying sequences and sizes. Recent landmark studies have defined the precisely orchestrated posttranslational modification cascade culminating in thiopeptide product formation. Because diverse thiopeptides are processed by a relatively small number of well-conserved enzymes, it has been suggested that artificial diversification of the precursor peptide could allow a vast new chemical space to be explored for clinically important activities. The success of this strategy depends on the plasticity of thiopeptide processing machinery, an open question that warrants further investigation. There is an urgent need therefore to leverage established thiopeptide research platforms to investigate substrate-enzyme specificity and devise intelligent diversification strategies for library generation. Meanwhile, the distinct genomic signatures of conserved thiopeptide-associated genes will enable the continued mining of nature for novel compounds and processing enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acker MG, Bowers AA, Walsh CT (2009) Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. J Am Chem Soc 131:17563–17565

    Article  CAS  Google Scholar 

  • Aminake MN, Schoof S, Sologub L, Leubner M, Kirschner M, Arndt HD, Pradel G (2011) Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast. Antimicrob Agents Chemother 55:1338–1348

    Article  CAS  Google Scholar 

  • Anborgh PH, Parmeggiani A (1991) New antibiotic that acts specifically on the GTP-bound form of elongation factor-Tu. EMBO J 10:779–784

    CAS  Google Scholar 

  • Arnison PG et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160

    Article  CAS  Google Scholar 

  • Bennallack PR, Burt SR, Heder MJ, Robison RA, Griffitts JS (2014) Characterization of a novel plasmid-borne thiopeptide gene cluster in Staphylococcus epidermidis strain 115. J Bacteriol 196:4344–4350

    Article  Google Scholar 

  • Bennallack PR, Bewley KD, Burlingame MA, Robison RA, Miller SM, Griffitts JS (2016) Reconstitution and minimization of a micrococcin biosynthetic pathway in Bacillus subtilis. J Bacteriol 198:2431–2438

    Article  CAS  Google Scholar 

  • Bewley KD, Bennallack PR, Burlingame MA, Robison RA, Griffitts JS, Miller SM (2016) Capture of micrococcin biosynthetic intermediates reveals C-terminal processing as an obligatory step for in vivo maturation. Proc Natl Acad Sci USA 113:12450–12455

    Article  CAS  Google Scholar 

  • Bhansali SG, Mullane K, Ting LSL, Leeds JA, Dabovic K, Praestgaard J, Pertel P (2015) Pharmacokinetics of LFF571 and vancomycin in patients with moderate Clostridium difficile infections. Antimicrob Agents Chemother 59:1441–1445

    Article  Google Scholar 

  • Bhat UG, Halasi M, Gartel AL (2009) Thiazole antibiotics target FOXM1 and induce apoptosis in human cancer cells. PLoS ONE 4:e5592

    Article  Google Scholar 

  • Bowers AA, Acker MG, Koglin A, Walsh CT (2010) Manipulation of thiocillin variants by prepeptide gene replacement: structure, conformation, and activity of heterocycle substitution mutants. J Am Chem Soc 132:7519–7527

    Article  CAS  Google Scholar 

  • Bowers AA, Acker MG, Young TS, Walsh CT (2012) Generation of thiocillin ring size variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. J Am Chem Soc 134:10313–10316

    Article  CAS  Google Scholar 

  • Brown LCW, Acker MG, Clardy J, Walsh CT, Fischbach MA (2009) Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc Natl Acad Sci USA 106:2549–2553

    Article  Google Scholar 

  • Burkhart BJ, Hudson GA, Dunbar KL, Mitchell DA (2015) A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat Chem Biol 11:564–570

    Article  CAS  Google Scholar 

  • Cox CL, Doroghazi JR, Mitchell DA (2015) The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genomics 16:778

    Article  Google Scholar 

  • Dunbar KL, Chekan JR, Cox CL, Burkhart BJ, Nair SK, Mitchell DA (2014) Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat Chem Biol 10:823–829

    Article  CAS  Google Scholar 

  • Engelhardt K, Degnes KF, Zotchev SB (2010) Isolation and characterization of the gene cluster for biosynthesis of the thiopeptide antibiotic TP-1161. Appl Environ Microbiol 76:7093–7101

    Article  CAS  Google Scholar 

  • Flinspach K, Kapitzke C, Tocchetti A, Sosio M, Apel AK (2014) Heterologous expression of the thiopeptide antibiotic GE2270 from Planobispora rosea ATCC 53733 in Streptomyces coelicolor requires deletion of ribosomal genes from the expression construct. PLoS ONE 9:e90499

    Article  Google Scholar 

  • Harms JM et al (2008) Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol Cell 30:26–38

    Article  CAS  Google Scholar 

  • Hayashi S et al (2014) Genome mining reveals a minimum gene set for the biosynthesis of 32-membered macrocyclic thiopeptides lactazoles. Chem Biol 21:679–688

    Article  CAS  Google Scholar 

  • Heffron SE, Jurnak F (2000) Structure of an EF-Tu complex with a thiazolyl peptide antibiotic determined at 2.35 angstrom resolution: Atomic basis for GE2270A inhibition of EF-Tu. Biochemistry 39:37–45

    Article  CAS  Google Scholar 

  • Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S (2011) The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem 3:829–829

    Article  CAS  Google Scholar 

  • Hudson GA, Zhang Z, Tietz JI, Mitchell DA, van der Donk WA (2015) In vitro biosynthesis of the core scaffold of the thiopeptide thiomuracin. J Am Chem Soc 137:16012–16015

    Article  CAS  Google Scholar 

  • Just-Baringo X, Albericio F, Alvarez M (2014) Thiopeptide engineering: A multidisciplinary effort towards future drugs. Angew Chem Int Ed Engl 53:6602–6616

    Article  CAS  Google Scholar 

  • Kelly WL, Pan L, Li CX (2009) Thiostrepton biosynthesis: Prototype for a new family of bacteriocins. J Am Chem Soc 131:4327–4334

    Article  CAS  Google Scholar 

  • Koehnke J et al (2013) The cyanobactin heterocyclase enzyme: A processive adenylase that operates with a defined order of reaction. Angew Chem Int Ed Engl 52:13991–13996

    Article  CAS  Google Scholar 

  • LaMarche MJ et al (2012) Discovery of LFF571: An investigational agent for Clostridium difficile infection. J Med Chem 55:2376–2387

    Article  CAS  Google Scholar 

  • Lee M, Yang J, Park S, Jo E, Kim HY, Bae YS, Windisch MP (2016) Micrococcin P1, a naturally occurring macrocyclic peptide inhibiting hepatitis C virus entry in a pan-genotypic manner. Antiviral Res 132:287–295

    Article  CAS  Google Scholar 

  • Lentzen G, Klinck R, Matassova N, Aboul-ela F, Murchie AIH (2003) Structural basis for contrasting activities of ribosome binding thiazole antibiotics. Chem Biol 10:769–778

    Article  CAS  Google Scholar 

  • Li C, Zhang F, Kelly WL (2011) Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs. Mol Biosyst 7:82–90

    Article  CAS  Google Scholar 

  • Li C, Zhang F, Kelly WL (2012) Mutagenesis of the thiostrepton precursor peptide at Thr7 impacts both biosynthesis and function. Chem Commun (Camb) 48:558–560

    Article  CAS  Google Scholar 

  • Liao R et al (2009) Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications. Chem Biol 16:141–147

    Article  CAS  Google Scholar 

  • Luo X et al (2016) Recombinant thiopeptides containing noncanonical amino acids. Proc Natl Acad Sci USA 113:3615–3620

    Article  CAS  Google Scholar 

  • Malcolmson SJ, Young TS, Ruby JG, Skewes-Cox P, Walsh CT (2013) The posttranslational modification cascade to the thiopeptide berninamycin generates linear forms and altered macrocyclic scaffolds. Proc Natl Acad Sci USA 110:8483–8488

    Article  CAS  Google Scholar 

  • McConkey GA, Rogers MJ, McCutchan TF (1997) Inhibition of Plasmodium falciparum protein synthesis - targeting the plastid-like organelle with thiostrepton. J Biol Chem 272:2046–2049

    Article  CAS  Google Scholar 

  • Morris RP et al (2009) Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. J Am Chem Soc 131:5946–5955

    Article  CAS  Google Scholar 

  • Mullane K et al (2015) Multicenter, randomized clinical trial to compare the safety and efficacy of LFF571 and vancomycin for Clostridium difficile infections. Antimicrob Agents Chemother 59:1435–1440

    Article  CAS  Google Scholar 

  • Ortega MA, van der Donk WA (2016) New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chem Biol 23:31–44

    Article  CAS  Google Scholar 

  • Ortega MA, Hao Y, Zhang Q, Walker MC, van der Donk WA, Nair SK (2015) Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature 517:509–512

    Article  CAS  Google Scholar 

  • Pandit B, Gartel AL (2011) Thiazole antibiotic thiostrepton synergize with bortezomib to induce apoptosis in cancer cells. PLoS ONE 6:e17110

    Article  CAS  Google Scholar 

  • Parmeggiani A, Nissen P (2006) Elongation factor Tu-targeted antibiotics: four different structures, two mechanisms of action. FEBS Lett 580:4576–4581

    Article  CAS  Google Scholar 

  • Parmeggiani A, Krab IM, Okamura S, Nielsen RC, Nyborg J, Nissen P (2006) Structural basis of the action of pulvomycin and GE2270A on elongation factor Tu. Biochemistry 45:6846–6857

    Article  CAS  Google Scholar 

  • Porse BT, Leviev I, Mankin AS, Garrett RA (1998) The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre. J Mol Biol 276:391–404

    Article  CAS  Google Scholar 

  • Porse BT, Cundliffe E, Garrett RA (1999) The antibiotic micrococcin acts on protein L11 at the ribosomal GTPase centre. J Mol Biol 287:33–45

    Article  CAS  Google Scholar 

  • Rogers MJ, Cundliffe E, McCutchan TF (1998) The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrob Agents Chemother 42:715–716

    CAS  Google Scholar 

  • Schoof S et al (2010) Antiplasmodial thiostrepton derivatives: Proteasome inhibitors with a dual mode of action. Angew Chem Int Ed Eng 49:3317–3321

    Article  CAS  Google Scholar 

  • Su T (1948) Micrococcin. An antibacterial substance formed by a strain of micrococcus. Br J Exp Pathol 29:473

    CAS  Google Scholar 

  • Thompson J, Cundliffe E, Stark MJR (1982) The mode of action of berninamycin and the mechanism of resistance in the producing organism, Streptomyces-bernensis. J Gen Microbiol 128:875–884

    CAS  Google Scholar 

  • Tran HL, Lexa KW, Julien O, Young TS, Walsh CT, Jacobson MP, Wells JA (2017) Structure–activity relationship and molecular mechanics reveal the importance of ring entropy in the biosynthesis and activity of a natural product. J Am Chem Soc 139:2541–2544

    Article  CAS  Google Scholar 

  • Truman AW (2016) Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides. Beilstein J Org Chem 12:1250–1268

    Article  CAS  Google Scholar 

  • Trzasko A, Leeds JA, Praestgaard J, LaMarche MJ, McKenney D (2012) Efficacy of LFF571 in a hamster model of Clostridium difficile infection. Antimicrob Agents Chemother 56:4459–4462

    Article  CAS  Google Scholar 

  • Ueno M et al (2004) Suppressive effect of antibiotic siomycin on antibody production. J Antibiot 57:590–596

    Article  CAS  Google Scholar 

  • van Opijnen T, Camilli A (2013) Transposon insertion sequencing: A new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11:435–442

    Article  Google Scholar 

  • Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84

    Article  CAS  Google Scholar 

  • Wever WJ, Bogart JW, Baccile JA, Chan AN, Schroeder FC, Bowers AA (2015) Chemoenzymatic synthesis of thiazolyl peptide natural products featuring an enzyme-catalyzed formal [4 + 2] cycloaddition. J Am Chem Soc 137:3494–3497

    Article  CAS  Google Scholar 

  • Wever WJ, Bogart JW, Bowers AA (2016) Identification of pyridine synthase recognition sequences allows a modular solid-phase route to thiopeptide variants. J Am Chem Soc. doi:10.1021/jacs.6b05389

    Google Scholar 

  • Young TS, Dorrestein PC, Walsh CT (2012) Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants. Chem Biol 19:1600–1610

    Article  CAS  Google Scholar 

  • Yu Y et al (2009) Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. ACS Chem Biol 4:855–864

    Article  CAS  Google Scholar 

  • Zhang F, Kelly WL (2015) Saturation mutagenesis of Tsra Ala4 unveils a highly mutable residue of thiostrepton A. ACS Chem Biol 10:998–1009

    Article  CAS  Google Scholar 

  • Zhang Q, Liu W (2013) Biosynthesis of thiopeptide antibiotics and their pathway engineering. Nat Prod Rep 30:218–226

    Article  CAS  Google Scholar 

  • Zhang F, Li C, Kelly WL (2016a) Thiostrepton variants containing a contracted quinaldic acid macrocycle result from mutagenesis of the second residue. ACS Chem Biol 11:415–424

    Article  CAS  Google Scholar 

  • Zhang Z, Hudson GA, Mahanta N, Tietz JI, van der Donk WA, Mitchell DA (2016b) Biosynthetic timing and substrate specificity for the thiopeptide thiomuracin. J Am Chem Soc 138:15511–15514

    Article  CAS  Google Scholar 

  • Zhou YX, Zhu SY, Cai CZ, Yuan PF, Li CM, Huang YY, Wei WS (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Susan Miller and Kathryn Bewley for illuminating discussions and helpful suggestions in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel S. Griffitts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennallack, P.R., Griffitts, J.S. Elucidating and engineering thiopeptide biosynthesis. World J Microbiol Biotechnol 33, 119 (2017). https://doi.org/10.1007/s11274-017-2283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2283-9

Keywords

Navigation