Skip to main content
Log in

Comparative metagenomics reveals insights into the deep-sea adaptation mechanism of the microorganisms in Iheya hydrothermal fields

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, comparative metagenomic analysis was performed to investigate the genetic profiles of the microbial communities inhabiting the sediments surrounding Iheya North and Iheya Ridge hydrothermal fields. Four samples were used, which differed in their distances from hydrothermal vents. The results showed that genes involved in cell surface structure synthesis, polyamine metabolism and homeostasis, osmoadaptation, pH and Na+ homeostasis, and heavy-metal transport were abundant. Pathways for putrescine and spermidine synthesis and transport were identified in the four metagenomes, which possibly participate in the regulation of cytoplasmic pH. Genes involved in the transport of K+ and the biosynthesis of glycine betaine, proline, and trehalose, together with genes encoding mechanosensitive channel of small conductance, were contributors of osmoadaptation. Detection of genes encoding F1Fo-ATPase and cation/proton antiporters indicated critical roles played by pH and sodium homeostasis. Cu2+-exporting and Cd2+/Zn2+-exporting ATPases functioned in the expulsion of toxic metals across cellular membranes. It is noteworthy that the distribution of some genes, such as that encoding cardiolipin synthase, was apparently affected by distance to the vent site. These findings provide insight into microbial adaptation mechanisms in deep-sea sediment environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587. doi:10.1126/science.1077945

    Article  CAS  Google Scholar 

  • Berrier C, Coulombe A, Szabo I, Zoratti M, Ghazi A (1992) Gadolinium ions inhibit the loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur J Biochem 206:559–565. doi:10.1111/j.1432-1033.1992.tb16960.x

    Article  CAS  Google Scholar 

  • Bock E, Wagner M (2006) Oxidation of inorganic nitrogen compounds as an energy source. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 457–495

    Chapter  Google Scholar 

  • Candela T, Fouet A (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60:1091–1098. doi:10.1111/j.1365-2958.2006.05179.x

    Article  CAS  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226

    Article  CAS  Google Scholar 

  • Chiba H, Kataoka S, Ishibashi J, Yamananka T (2000) Distribution of hydrothermal vents, fluid chemistry, and phase separation at the Iheya North seafloor hydrothermal system, Mid-Okinawa Trough. EOS Trans Am Geophys Union 81:WP86 (Abstract)

    Google Scholar 

  • Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340

    Article  CAS  Google Scholar 

  • Corcelli A (2009) The cardiolipin analogues of Archaea. Biochim Biophys Acta 1788:2101–2106. doi:10.1016/j.bbamem.2009.05.010

    Article  CAS  Google Scholar 

  • Daniel RM, Cowan DA (2000) Biomolecular stability and life at high temperatures. Cell Mol Life Sci 57:250–264. doi:10.1007/PL00000688

    Article  CAS  Google Scholar 

  • Dibrova DV, Galperin MY, Koonin EV, Mulkidjanian AY (2015) Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics. Biochemistry (Moscow) 80:495–516. doi:10.1134/S0006297915050016

    Article  CAS  Google Scholar 

  • Domene C, Furini S (2012) Molecular dynamics simulations of the TrkH membrane protein. Biochemistry 51:1559–1565. doi:10.1021/bi201586n

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trahalose: a multifunctional molecule. Glycobiology 13:17R–27R. doi:10.1093/glycob/cwg047

    Article  CAS  Google Scholar 

  • Enomoto K, Koyama N (1999) Effect of growth pH on the phospholipid contents of the membranes from alkaliphilic bacteria. Curr Microbiol 39:270–273

    Article  CAS  Google Scholar 

  • Epstein W (1986) Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiol Lett 39:73–80. doi:10.1016/0378-1097(86)90063-7

    Article  CAS  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438. doi:10.1126/science.aac7745

    Article  CAS  Google Scholar 

  • Fang JS, Barcelona MJ, Nogi Y, Kato C (2000) Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11,000 m. Deep-Sea Res I(47):1173–1182. doi:10.1016/S0967-0637(99)00080-1

    Article  Google Scholar 

  • Gamo T, Sakai H, Kim ES, Shitashima K, Ishibashi J (1991) High alkalinity due to sulfate reduction in the CLAM hydrothermal field, Okinawa Trough. Earth Planet Sci Lett 107:328–338

    Article  CAS  Google Scholar 

  • Glasby GP, Notsu K (2003) Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geol Rev 23:299–339. doi:10.1016/j.oregeorev.2003.07.001

    Article  Google Scholar 

  • Haines TH, Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 588:35–39. doi:10.1016/S0014-5793(02)03292-1

    Article  Google Scholar 

  • Hanfrey CC, Pearson BM, Hazeldine S, Lee J, Gaskin DJ, Woster PM, Phillips MA, Michael AJ (2011) Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J Biol Chem 286:43301–43312. doi:10.1074/jbc.M111.307835

    Article  CAS  Google Scholar 

  • Hezayen FF, Rehm BH, Tindall BJ, Steinbüchel A (2001) Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol 51:1133–1142. doi:10.1099/00207713-51-3-1133

    Article  CAS  Google Scholar 

  • Hicks DB, Fujisawa M, Krulwich TA (2010) F1Fo-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377. doi:10.1016/j.bbabio.2010.02.028

    Article  CAS  Google Scholar 

  • Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202. doi:10.1038/nature03692

    Article  CAS  Google Scholar 

  • Igarashi K, Ito K, Kashiwagi K (2001) Polyamine uptake systems in Escherichia coli. Res Microbiol 152:271–278. doi:10.1016/S0923-2508(01)01198-6

    Article  CAS  Google Scholar 

  • Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S, Fackelmayer OJ, Smith TA, Earl J, Elbourne LD, Hassan K, Paulsen IT, Kolstø AB, Tourasse NJ, Ehrlich GD, Boissy R, Ivey DM, Li G, Xue Y, Ma Y, Hu FZ, Krulwich TA (2011) The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13:3289–3309. doi:10.1111/j.1462-2920.2011.02591.x

    Article  CAS  Google Scholar 

  • Kandler O, KÓ§nig H, Wiegel J, Claus D (1983) Occurrence of poly-γ-d-glutamic acid and poly-α-l-glutamine in the genera Xanthobacter, Flexithrix, Sporosarcina and Planococcus. Syst Appl Microbiol 4:34–41. doi:10.1016/S0723-2020(83)80032-0

    Article  CAS  Google Scholar 

  • Kashiwagi K, Pistocchi R, Shibuya S, Sugiyama S, Morikawa K, Igarashi K (1996) Spermidine-preferential uptake system in Escherichia coli: identification of amino acids involved in polyamine binding in PotD protein. J Biol Chem 271:12205–12208. doi:10.1074/jbc.271.21.12205

    Article  CAS  Google Scholar 

  • Katayama H, Watanabe Y (2003) The Huanghe and Changjiang contribution to seasonal variability in terrigenous particulate load to the Okinawa Trough. Deep Sea Res Part II 50:475–485. doi:10.1016/S0967-0645(02)00469-1

    Article  CAS  Google Scholar 

  • Kawagucci S, Chiba H, Ishibashi JI, Yamanaka T, Toki T, Muramatsu Y, Ueno Y, Makabe A, Inoue K, Yoshida N, Nakagawa S, Nunoura T, Takai K, Takahata N, Sano Y, Narita T, Teranishi G, Obata H, Gamo T (2011) Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: implication for origin of methane in subseafloor fluid circulation systems. Geochem J 45: 109–124. doi:10.2343/geochemj.1.0105

    Article  CAS  Google Scholar 

  • Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176:426–431

    Article  CAS  Google Scholar 

  • Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenas: the unidirectional TreT pathway. Arch Microbiol 190:355–369. doi:10.1007/s00203-008-0377-3

    Article  CAS  Google Scholar 

  • Krulwich TA, Guffanti AA (1989) The Na+ cycle of extreme alkalophiles: a secondary Na+/H+ antiporter and Na+/solute symporters. J Bioenerg Biomembr 21:663–677. doi:10.1007/BF00762685

    Article  CAS  Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343. doi:10.1038/nrmicro2549

    Article  CAS  Google Scholar 

  • Lamark T, Styrvold OB, Strøm AR (1992) Efflux of choline and glycine betaine from osmoregulating cells of Escherichia coli. FEMS Microbiol Lett 96:149–154

    Article  CAS  Google Scholar 

  • Lee CS, Li XD, Shi WZ, Cheung SC, Thornton I (2006) Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ 356:45–61. doi:10.1016/j.scitotenv.2005.03.024

    Article  CAS  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth I (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi:10.1093/emboj/18.7.1730

    Article  CAS  Google Scholar 

  • Lopez CS, Alice AF, Heras H, Rivas EA, Sanchez-Rivas C (2006) Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology 152:605–616. doi:10.1099/mic.0.28345-0

    Article  CAS  Google Scholar 

  • Mana-Capelli S, Mandal AK, Argüello JM (2003) Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J Biol Chem 278:40534–40541. doi:10.1074/jbc.M306907200

    Article  CAS  Google Scholar 

  • McLean RJ, Beauchemin D, Clapham L, Beveridge TJ (1990) Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Appl Environ Microbiol 56:3671–3677

    CAS  Google Scholar 

  • Nakamura T, Yamamuro N, Stumpe S, Unemoto T, Bakker EP (1998) Cloning of the trkAH gene cluster and characterization of the Trk K+-uptake system of Vibrio alginolyticus. Microbiology 144:2281–2289. doi:10.1099/00221287-144-8-2281

    Article  CAS  Google Scholar 

  • Nunes-Alves C (2016) Microbial ecology: do it yourself nitrification. Nat Rev Microbiol 14:61–61. doi:10.1038/nrmicro.2015.20

    Article  CAS  Google Scholar 

  • Ohta S, Kim D (2001) Submersible observations at the hydrothermal vent communities on the Iheya Ridge, Mid Okinawa Trough, Japan. J Oceanogra 57:663–677. doi:10.1023/A:1021620023610

    Article  Google Scholar 

  • Palmgren MG, Nissen P (2011) P-type ATPase. Annu Rev Biophys 40:243–266. doi:10.1146/annurev.biophys.093008.131331

    Article  CAS  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209. doi:10.1080/10408410701451948

    Article  CAS  Google Scholar 

  • Prieur D, Erauso G, Jeanthon C (1995) Hyperthermophilic life at deep-sea hydrothermal vents. Planet Space Sci 43:115–122. doi:10.1016/0032-0633(94)00143-F

    Article  CAS  Google Scholar 

  • Rensing C, Mitra B, Rosen BP (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94:14326–14331. doi:10.1073/pnas.94.26.14326

    Article  CAS  Google Scholar 

  • Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM (2007) Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol Microbiol 64:1455–1465. doi:10.1111/j.1365-2958.2007.05727.x

    Article  CAS  Google Scholar 

  • Romantsov T, Guan Z, Wood JM (2009) Cardiolipin and the osmotic stress responses of bacteria. Biochim Biophys Acta 1788:2092–2100. doi:10.1016/j.bbamem.2009.06.010

    Article  CAS  Google Scholar 

  • Roosild TP, Miller S, Booth IR, Choe S (2002) A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Cell 109:781–791. doi:10.1016/S0092-8674(02)00768-7

    Article  CAS  Google Scholar 

  • Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A (2015) Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA 112:4015–4020. doi:10.1073/pnas.1421865112

    Article  CAS  Google Scholar 

  • Sakai H, Gamo T, Kim ES, Shitashima K, Yanagisawa F, Tsutsumi M, Ishibashi J, Sano Y, Wakita H, Tanaka T, Matsumoto T, Naganuma T, Mitsuzawa K (1990) Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough backarc basin. Geo Res Lett 17:2133–2136. doi:10.1029/GL017i012p02133

    Article  CAS  Google Scholar 

  • Sans N, Schindler U, Schroder J (1988) Ornithine cyclodeaminase from Ti plasmid C58: DNA sequence, enzyme properties and regulation of activity by arginine. Eur J Biochem 173:123–130. doi:10.1111/j.1432-1033.1988.tb13975.x

    Article  CAS  Google Scholar 

  • Sibuet JC, Letouzey J, Barbier F, Charvet J, Foucher JP, Hilde TW, Kimura M, Chiao LY, Marsset B, Muller C, Stéphan JF (1987) Back arc extension in the Okinawa Trough. J Geophys Res 92:14041–14063

    Article  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179:9–19. doi:10.1016/S0378-1119(96)00323-X

    Article  CAS  Google Scholar 

  • Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, Chan CS, Comolli LR, Ferriera S, Johnson J, Heidelberg JF, Edwards KJ (2011) Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS ONE 6:e25386. doi:10.1371/journal.pone.0025386

    Article  CAS  Google Scholar 

  • Sleator RD, Hill C (2001) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71. doi:10.1016/S0168-6445(01)00071-7

    Article  Google Scholar 

  • Sleator RD, Gahan CGM, Hill C (2001) Identification and disruption of the proBA locus in Listeria monocytogenes: role of proline biosynthesis in salt tolerance and murine infection. Appl Environ Microbiol 67:2571–2577. doi:10.1128/AEM.67.6.2571-2577.2001

    Article  CAS  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79. doi:10.1016/S0065-2911(09)05501-5

    Article  Google Scholar 

  • Speelmans G, Poolman B, Konings WN (1995) Na+ as coupling ion in energy transduction in extremophilic Bacteria and Archaea. World J Microbiol Biotechnol 11:58–70. doi:10.1007/BF00339136

    Article  CAS  Google Scholar 

  • Strøm AR, Falkenberg P, Landfald B (1986) Genetics of osmoregulation in Escherichia coli: uptake and biosynthesis of organic osmolytes. FEMS Microbiol Rev 39:79–86. doi:10.1016/0378-1097(86)90064-9

    Article  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 368:265–268. doi:10.1038/368265a0

    Article  CAS  Google Scholar 

  • Sun QL, Wang MQ, Sun L (2015) Characteristics of the cultivable bacteria from sediments associated with two deep-sea hydrothermal vents in Okinawa Trough. World J Microbiol Biotechnol 31:2025–2037. doi:10.1007/s11274-015-1953-8

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    CAS  Google Scholar 

  • Takaki Y, Shimamura S, Nakagawa S, Fukuhara Y, Horikawa H, Ankai A, Harada T, Hosoyama A, Oguchi S, Fukui S, Fujita N, Takami H, Takai K (2010) Bacterial lifestyle in a deep-sea hydrothermal vent chimney revealed by the genome sequence of the thermophilic bacterium Deferribacter desulfuricans SSM1. DNA Res 17:123–137. doi:10.1093/dnares/dsq005

    Article  CAS  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331. doi:10.1093/nar/28.21.4317

    Article  CAS  Google Scholar 

  • Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30:3927–3935. doi:10.1093/nar/gkf526

    Article  CAS  Google Scholar 

  • Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32:6292–6303. doi:10.1093/nar/gkh970

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • Thornburg CC, Zabriskie TM, McPhail KL (2010) Deep-sea hydrothermal vents: potential hot spots for natural products discovery? J Nat Prod 73:489–499. doi:10.1021/np900662k

    Article  CAS  Google Scholar 

  • Tokeshi M (2011) Spatial structures of hydrothermal vents and vent-associated megafauna in the back-arc basin system of the Okinawa Trough, western Pacific. J Oceanogr 67:651–665. doi:10.1007/s10872-011-0065-9

    Article  Google Scholar 

  • Tsuji T, Takai K, Oiwane H, Nakamura Y, Masaki Y, Kumagai H, Kinoshita M, Yamamoto F, Okano T, Kuramoto S (2012) Hydrothermal fluid flow systems around the Iheya North Knoll in the mid-Okinawa trough based on seismic reflection data. J Volcanol Geoth Res 213–214:41–50. doi:10.1016/j.jvolgeores.2011.11.007

    Article  Google Scholar 

  • Uchida I, Sekizaki T, Hashimoto K, Terakado N (1985) Association of the encapsulation of Bacillus anthracis with a 60 megadalton plasmid. J Gen Microbiol 131:363–367

    CAS  Google Scholar 

  • Wang HL, Sun L (2016) Comparative metagenomic analysis of the microbial communities in the surroundings of Iheya north and Iheya ridge hydrothermal fields reveals insights into the survival strategy of microorganisms in deep-sea environments. J Marine Syst. doi:10.1016/j.jmarsys.2016.10.006

    Google Scholar 

  • Yanagawa K, Nunoura T, McAllister SM, Hirai M, Breuker A, Brandt L, House CH, Moyer CL, Birrien JL, Aoike K, Sunamura M, Urabe T, Mottl MJ, Takai K (2013) The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331). Front Microbiol 4:327. doi:10.3389/fmicb.2013.00327

    Article  Google Scholar 

  • Yanagawa K, Breuker A, Schippers A, Nishizawa M, Ijiri A, Hirai M, Takaki Y, Sunamura M, Urabe T, Nunoura T, Takai K (2014) Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331). Appl Environ Microbiol 80:6126–6135. doi:10.1128/AEM.01741-14

    Article  Google Scholar 

  • Zhang Y, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233. doi:10.1038/nrmicro1839

    Article  Google Scholar 

  • Zhang J, Sun QL, Zeng ZG, Chen S, Sun L (2015) Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol Res 177:43–52. doi:10.1016/j.micres.2015.05.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants  of the Strategic Biological Resources Service Network Plan and the Strategic Priority Research Program of Chinese Academy of Sciences (ZSSD-005 and XDA11030401) and the Taishan Scholar Program of Shandong Province. We thank the WPOS (Western Pacific Ocean System) sample center for providing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 859 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hl., Sun, L. Comparative metagenomics reveals insights into the deep-sea adaptation mechanism of the microorganisms in Iheya hydrothermal fields. World J Microbiol Biotechnol 33, 86 (2017). https://doi.org/10.1007/s11274-017-2255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2255-0

Keywords

Navigation