Skip to main content

Advertisement

Log in

Survival of Vibrio cholerae O1 on fomites

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

It is well established that the contamination sources of cholera causing bacteria, Vibrio cholerae, are water and food, but little is known about the transmission role of the fomites (surfaces that can carry pathogens) commonly used in households. In the absence of appropriate nutrients or growth conditions on fomites, bacteria have been known to assume a viable but non-culturable (VBNC) state after a given period of time. To investigate whether and when V. cholerae O1 assumes such a state, this study investigated the survival and viable quantification on a range of fomites such as paper, wood, glass, plastic, cloth and several types of metals under laboratory conditions. The fomites were inoculated with an outbreak strain of V. cholerae and its culturability was examined by drop plate count method at 30 min intervals for up to 6 h. For molecular detection, the viable/dead stain ethidium monoazide (EMA) which inhibits amplification of DNA from dead cells was used in combination with real-time polymerase chain reaction (EMA-qPCR) for direct quantitative analyses of viable V. cholerae at 2, 4, 6, 24 h and 7 day time intervals. Results showed that V. cholerae on glass and aluminum surfaces lost culturability within one hour after inoculation but remained culturable on cloth and wood for up to four hours. VBNC V. cholerae on dry fomite surfaces was detected and quantified by EMA-qPCR even 7 days after inoculation. In conclusion, the prolonged survival of V. cholerae on various household fomites may play vital role in cholera transmission and needs to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrishami S, Tall B, Bruursema T, Epstein P, Shah D (1994) Bacterial adherence and viability on cutting board surfaces. J Food Saf 14(2):153–172

    Article  Google Scholar 

  • Ali M, Lopez AL, You Y, Kim YE, Sah B, Maskery B, Clemens J (2012) The global burden of cholera. Bull World Health Organ 90:209–218

    Article  Google Scholar 

  • Ali M, Nelson AR, Lopez AL, Sack DA (2015) Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis 9(6):e0003832. doi:10.1371/journal.pntd.0003832

    Article  Google Scholar 

  • Barua D (1970) Survival of cholera vibrios in food, water and fomites. Public Health Pap 40:29–31

    CAS  Google Scholar 

  • Blackstone GM, Nordstrom JL, Bowen MD, Meyer RF, Imbro P, DePaola A (2007) Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay. J Microbiol Methods 68:254–259. doi:10.1016/j.mimet.2006.08.006

    Article  CAS  Google Scholar 

  • Butler SM, Nelson EJ, Chowdhury N, Faruque SM, Calderwood SB, Camilli A (2006) Cholera stool bacteria repress chemotaxis to increase infectivity. Mol Microbiol 60:417–426

    Article  CAS  Google Scholar 

  • Cash R, Music S, Libonati J, Craig J, Pierce N, Hornick R (1974a) Response of man to infection with Vibrio cholerae. II. Protection from illness afforded by previous disease and vaccine. J Infect Dis 130:325–333

    Article  CAS  Google Scholar 

  • Cash RA, Music SI, Libonati JP, Snyder MJ, Wenzel RP, Hornick RB (1974b) Response of man to infection with Vibrio cholerae. I. Clinical, serologic, and bacteriologic responses to a known inoculum. J Infect Dis 129:45–52

    Article  CAS  Google Scholar 

  • Cholera vaccines: WHO position paper (2010) Wkly Epidemiol Rec 85(13):117–128

  • Colwell RR (2009) Viable but not cultivable bacteria. In: Epstein SS (ed) Uncultivated microorganisms. Springer, Berlin, pp 121–129. doi:10.1007/978-3-540-85465-4_1

    Chapter  Google Scholar 

  • Colwell R, Brayton P, Herrington D, Tall B, Huq A, Levine M (1996) Viable but non-culturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World J Microbiol Biotechnol 12:28–31

    Article  CAS  Google Scholar 

  • De Medici D, Croci L, Delibato E, Di Pasquale S, Filetici E, Toti L (2003) Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. Appl Environ Microbiol 69:3456–3461

    Article  Google Scholar 

  • Drasar B (1995) Vibrio cholerae and cholera: molecular to global perspectives. Trans R Soc Trop Med Hyg 89:580

    Article  Google Scholar 

  • Eisenberg MC, Robertson SL, Tien JH (2013) Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. J Theor Biol 324:84–102

    Article  Google Scholar 

  • El-Din El-Dars FM, Hassan WM (2005) A preliminary bacterial study of Egyptian paper money. Int J Environ Health Res 15:235–240

    Article  Google Scholar 

  • Glass RI, Black RE (1992) The epidemiology of cholera. In: Barua D, Greenough WB (eds) cholera. Springer, Boston, pp 129–154. doi:10.1007/978-1-4757-9688-9_7

    Chapter  Google Scholar 

  • Glass RI, Blake P, Waldman R, Claeson M, Pierce NF (1991) Cholera in Africa: lessons on transmission and control for Latin America. Lancet 338:791–795

    Article  CAS  Google Scholar 

  • Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283

    CAS  Google Scholar 

  • Islam M, Drasar B, Bradley D (1990) Long-term persistence of toxigenic Vibrio cholerae O1 in the mucilaginous sheath of a blue-green alga, Anabaena variabilis. J Trop Med Hyg 93:133–139

    CAS  Google Scholar 

  • Islam M, Hasan M, Miah M, Sur G, Felsenstein A, Venkatesan M, Sack R, Albert M (1993) Use of the polymerase chain reaction and fluorescent-antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms. Appl Environ Microbiol 59:536–540

    CAS  Google Scholar 

  • Islam MS, Hossain M, Khan S, Khan M, Sack R, Albert MJ, Huq A, Colwell R (2001) Survival of Shigella dysenteriae type 1 on fomites. J Health Popul Nutr 19:177–182

    CAS  Google Scholar 

  • Keer J, Birch L (2003) Molecular methods for the assessment of bacterial viability. J Microbiol Methods 53:175–183

    Article  CAS  Google Scholar 

  • Kendall EA, Chowdhury F, Begum Y, Khan AI, Li S, Thierer JH, Bailey J, Kreisel K, Tacket CO, LaRocque RC (2010) Relatedness of Vibrio cholerae O1/O139 isolates from patients and their household contacts, determined by multilocus variable-number tandem-repeat analysis. J Bacteriol 192:4367–4376

    Article  CAS  Google Scholar 

  • Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130

    Article  Google Scholar 

  • Levine M, Black R, Clements M, Nalin D, Cisneros L, Finkelstein R (1981) Volunteer studies in development of vaccines against cholera and enterotoxigenic Escherichia coli: a review. In: Holme T, Holmgren J, Merson MH, MolIby R (eds) Acute enteric infections in children. New prospects for treatment and prevention. Elsevier/North-Holland Publishing Co., Amsterdam, pp 443–459

    Google Scholar 

  • Lim VK (2001) Cholera: a re-emerging infection. Med J Malays 56:1–3

    CAS  Google Scholar 

  • Makison C, Swan J (2006) The effect of humidity on the survival of MRSA on hard surfaces. Indoor Built Environ 15:85–91

    Article  Google Scholar 

  • Mandal S, Mandal MD, Pal NK (2011) Cholera: a great global concern. Asian Pac J Trop Med 4:573–580

    Article  Google Scholar 

  • Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417:642–645

    Article  CAS  Google Scholar 

  • Milling A, Kehr R, Wulf A, Smalla K (2005) Survival of bacteria on wood and plastic particles: dependence on wood species and environmental conditions. Holzforschung 59:72–81

    Article  CAS  Google Scholar 

  • Mishra A, Taneja N, Sharma M (2012) Viability kinetics, induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio cholerae O1 in freshwater microcosm. J Appl Microbiol 112:945–953

    Article  CAS  Google Scholar 

  • Nandi B, Nandy RK, Mukhopadhyay S, Nair GB, Shimada T, Ghose AC (2000) Rapid method for species-specific identification ofVibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J Clin Microbiol 38:4145–4151

    CAS  Google Scholar 

  • Neely AN, Maley MP (2000) Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol 38:724–726

    CAS  Google Scholar 

  • Nelson EJ, Chowdhury A, Flynn J, Schild S, Bourassa L, Shao Y, LaRocque RC, Calderwood SB, Qadri F, Camilli A (2008) Transmission of Vibrio cholerae is antagonized by lytic phage and entry into the aquatic environment. PLoS Pathog 4:e1000187

    Article  Google Scholar 

  • Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A (2009) Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 7:693–702

    Article  CAS  Google Scholar 

  • Nocker A, Camper AK (2006) Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72:1997–2004

    Article  CAS  Google Scholar 

  • Nogva HK, Dromtorp S, Nissen H, Rudi K (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. Biotechniques 34:804–813

    CAS  Google Scholar 

  • Noskin GA, Stosor V, Cooper I, Peterson LR (1995) Recovery of vancomycin-resistant enterococci on fingertips and environmental surfaces. Infect Control Hosp Epidemiol 16:577–581

    Article  CAS  Google Scholar 

  • Noskin GA, Bednarz P, Suriano T, Reiner S, Peterson LR (2000) Persistent contamination of fabric-covered furniture by vancomycin-resistant enterococci: implications for upholstery selection in hospitals. Am J Infect Control 28:311–313

    Article  CAS  Google Scholar 

  • Pittet D, Allegranzi B, Sax H, Dharan S, Pessoa-Silva CL, Donaldson L, Boyce JM (2006) Evidence-based model for hand transmission during patient care and the role of improved practices. Lancet Infect Dis 6:641–652

    Article  Google Scholar 

  • Pollitzer R, Swaroop S, Burrows W (1959) Cholera. Monogr Ser World Health Organ 58:1001–1019

    CAS  Google Scholar 

  • Reuter S, Sigge A, Wiedeck H, Trautmann M (2002) Analysis of transmission pathways of Pseudomonas aeruginosa between patients and tap water outlets. Crit Care Med 30:2222–2228

    Article  Google Scholar 

  • Rollins D, Colwell R (1986) Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol 52:531–538

    CAS  Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    CAS  Google Scholar 

  • Rudi K, Moen B, Dromtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018–1024. doi:10.1128/AEM.71.2.1018-1024.2005

    Article  CAS  Google Scholar 

  • Rusin P, Maxwell S, Gerba C (2002) Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. J Appl Microbiol 93:585–592

    Article  CAS  Google Scholar 

  • Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363:223–233

    Article  CAS  Google Scholar 

  • Scott E, Bloomfield SF (1990) The survival and transfer of microbial contamination via cloths, hands and utensils. J Appl Bacteriol 68:271–278

    Article  CAS  Google Scholar 

  • Sehulster L, Chinn RY (2003) Guidelines for environmental infection control in health-care facilities: recommandations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm Rep 52(RR-10):1–42

    Google Scholar 

  • Snow J (1855) On the mode of communication of cholera, 2nd edn. John Churchill, London

    Google Scholar 

  • Sugimoto JD, Koepke AA, Kenah EE, Halloran ME, Chowdhury F, Khan AI, LaRocque RC, Yang Y, Ryan ET, Qadri F (2014) Household transmission of Vibrio cholerae in Bangladesh. PLoS Negl Trop Dis 8:e3314

    Article  Google Scholar 

  • Taylor J, Davies M, Canales M, Man Lai K (2013) The persistence of flood-borne pathogens on building surfaces under drying conditions. Int J Hyg Environ Health 216:91–99

    Article  Google Scholar 

  • Todd EC, Greig JD, Bartleson CA, Michaels BS (2008) Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 4. Infective doses and pathogen carriage. J Food Prot® 71:2339–2373

  • Todd EC, Greig JD, Bartleson CA, Michaels BS (2009) Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 6. Transmission and survival of pathogens in the food processing and preparation environment. J Food Prot® 72:202–219

  • Vriesekoop F, Russell C, Alvarez-Mayorga B, Aidoo K, Yuan Q, Scannell A, Beumer RR, Jiang X, Barro N, Otokunefor K (2010) Dirty money: an investigation into the hygiene status of some of the world’s currencies as obtained from food outlets. Foodborne Pathog Dis 7:1497–1502

    Article  Google Scholar 

  • Williams A, Avery L, Killham K, Jones D (2005) Persistence of Escherichia coli O157 on farm surfaces under different environmental conditions. J Appl Microbiol 98:1075–1083

    Article  CAS  Google Scholar 

  • Xu H-S, Roberts N, Singleton F, Attwell R, Grimes D, Colwell R (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323

    Article  CAS  Google Scholar 

  • Zahid MSH, Udden SN, Faruque A, Calderwood SB, Mekalanos JJ, Faruque SM (2008) Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants. Infect Immun 76:5266–5273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the project entitled “Combating Cholera Caused by Climate Change in Bangladesh, C5” (Grant No. 12-040KU) from Danish International Development Agency. We acknowledge International Centre for Diarrheal Disease (icddr, b) Bangladesh for providing the bacterial strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anowara Begum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhana, I., Hossain, Z.Z., Tulsiani, S.M. et al. Survival of Vibrio cholerae O1 on fomites. World J Microbiol Biotechnol 32, 146 (2016). https://doi.org/10.1007/s11274-016-2100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2100-x

Keywords

Navigation