Skip to main content
Log in

CenC, a multidomain thermostable GH9 processive endoglucanase from Clostridium thermocellum: cloning, characterization and saccharification studies

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The growing demands of bioenergy has led to the emphasis on novel cellulases to improve efficiency of biodegradation process of plant biomass. Therefore, a thermostable cellulolytic gene (CenC) with 3675 bp was cloned from Clostridium thermocellum and over-expressed in Escherichia coli strain BL21 CodonPlus. It was attested that CenC belongs to glycoside hydrolase family 9 (GH9) with four binding domains, a processive endoglucanase. CenC was purified to homogeneity, producing a single band on SDS-PAGE corresponding to 137.11 kDa, by purification steps of heat treatment combined with ion-exchange chromatography. Purified enzyme displayed optimal activity at pH 6.0 and 70 °C. CenC had a half-life of 24 min at 74 °C, was stable up to 2 h at 60 °C and over a pH range of 5.5–7.5. Enzyme showed high affinity towards various substrates and processively released cellobiose from cellulosic substrates. It efficiently hydrolyzed carboxymethyl cellulose (30 U/mg), β-Glucan Barley (94 U/mg); also showed activity towards p-nitrophenyl-β-d-cellobioside (18 U/mg), birchwood xylan (19 U/mg), beechwood xylan (17.5 U/mg), avicel (9 U/mg), whatman filter paper (11 U/mg) and laminarin (3.3 U/mg). CenC exhibited Km, Vmax, Kcat, Vmax K −1m and Kcat K −1m of 7.14 mM, 52.4 µmol mg−1 min−1, 632.85 s−1, 7.34 min−1 and 88.63, respectively used CMC as substrate. Recombinant CenC saccharified pretreated wheat straw and bagasse to 5.12 and 7.31 %, respectively at pH 7.0 and 45 °C after 2 h incubation. Its thermostability, high catalytic efficiency and independence of inhibitors make CenC enzyme an appropriate candidate for industrial applications and cost-effective saccharification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bajaj BK, Pangotra H, Wani AM, Sharma P, Sharma A (2009) Partial purification and characterization of a highly thermostable and pH stable endoglucanase from a newly isolated Bacillus strain M-9. Indian J Chem Technol 16:382–387

    CAS  Google Scholar 

  • Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Downing M, Eaton LM, Graham RL, Langholtz MH, Perlack RD, Turhollow AF, Stokes B, Brandt CC (2011) US billion-ton update: the biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  • El-Naghy MA, El-Katatny MS, Attia AA (1991) Degradation of cellulosic materials by Sporotrichum thermophile culture filtrate for sugar production. Int Biodeterioration 27(1):75–79

    Article  CAS  Google Scholar 

  • Gaudin C, Belaich A, Champ S, Belaich JP (2000) CelE, a multidomain cellulase from Clostridium cellulolyticum: a Key Enzyme in the Cellulosome? J Bacteriol 182(7):1910–1915

    Article  CAS  Google Scholar 

  • Gilad R, Rabinovich L, Yaron S, Edward A, Lamed R, Gilbert HJ, Shoham Y (2003) CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J Bacteriol 185(2):391–398

    Article  CAS  Google Scholar 

  • Iqbal NMH, Ahmed I, Zia AM, Irfan M (2011) Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2:149–156

    Article  CAS  Google Scholar 

  • Ja’afaru MI, Fagade OE (2007) Cellulase production and enzymatic hydrolysis of some selected local lignocellulosic substrates by a strain of Aspergillus niger. Res J Bio Sci 2(1):13–16

    Google Scholar 

  • Kataeva I, Li X-L, Chen H, Ljungdahl LG (1999) Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination. J Bacteriol 181:5288–5295

    CAS  Google Scholar 

  • Kataeva IA, Uversky VN, Brewer JM, Schubot F, Rose JP, Wang BC, Ljungdahl LG (2004) Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Eng 17(11):759–769

    Article  CAS  Google Scholar 

  • Khademi S, Guarino LA, Watanabe H, Tokuda G, Meyer EF (2002) Structure of an endoglucanase from termite, Nasutitermes takasagoensis. Acta Crystallogr D Biol Crystallogr 58:653–659

    Article  Google Scholar 

  • Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35(Suppl 2):W43–W46. doi:10.1093/nar/gkm234

    Article  Google Scholar 

  • Kocher GS, Kalra KL (2013) Optimization of pretreatment, enzymatic saccharification and fermentation conditions for bioethanol production from rice straw. Ind J Appl Res 3(5):62–64

    Article  Google Scholar 

  • Koppram R, Pejó ET, Xiros C, Olsson L (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32(1):46–53

    Article  CAS  Google Scholar 

  • Liang C, Fioronic M, Rodriguez-Roperoc F, Xuea Y, Schwanebergc U, Maa Y (2011) Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 154:46–53

    Article  CAS  Google Scholar 

  • Liu J, Liu W, Zhao X (2011) Cloning and functional characterization of a novel endo-β-1,4-glucanase gene from a soil-derived metagenomic library. App Microbiol Biotechnol 89:1083–1092

    Article  CAS  Google Scholar 

  • Liu D, Zhang R, Yang X, Zhang Z, Song S, Miao Y, Shen Q (2012) Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microb Cell Fact 11:25

    Article  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Morana A, Esposito A, Maurelli L, Ruggiero G, Ionata E, Rossi M, La Cara L (2008) A novel thermoacidophilic cellulase from Alicyclobacillus acidocaldarius. Protein Pept Lett 15:1017–1021

    Article  CAS  Google Scholar 

  • Narraa M, Dixit G, Divecha J, Kumar K, Madamwar D, Shah AR (2014) Production, purification and characterization of a novel GH 12 family endoglucanase from Aspergillus terreus and its application in enzymatic degradation of delignified rice straw. Int Biodeterior Biodegrad 88:150–161

    Article  Google Scholar 

  • Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaich JP, Driguez H, Haser R (1998) The crystal structure of the processive Endocellulase, CelF, of Clostridium cellulolyticum in complex with a thio-oligosaccharide inhibitor at 2.0 A° resolution. EMBO J 17:5551–5562

    Article  CAS  Google Scholar 

  • Pham TH, Quyen DT, Nghiem NM (2012) Purification and properties of an endoglucanase from Aspergillus niger VTCC-F021. Turk J Biol 36:694–701

    CAS  Google Scholar 

  • Reverbel-Leroy C, Pages S, Belaich A, Belaich JP, Tardif C (1997) The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome, purification and characterization of the recombinant form. J Bacteriol 179:46–52

    CAS  Google Scholar 

  • Riederer A, Takasuka TE, Makino S, Stevenson DM, Bukhman YV, Elsen NL, Fox BG (2011) Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl Environ Microbiol 77(4):1243–1253

    Article  CAS  Google Scholar 

  • Sadhu S, Saha P, Sen SK, Mayilraj S, Maiti TK (2013) Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. Springer Plus 2(1):1–10

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

  • Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. NREL Ethanol Project CAT Task Laboratory Analytical Procedure #009

  • Shi R, Li Z, Ye Q, Xu J, Liu Y (2013) Heterologous expression and characterization of a novel thermo-halotolerant endoglucanase Cel5H from Dictyoglomus thermophilum. Bioresour Technol 142:338–344

    Article  CAS  Google Scholar 

  • Shi H, Zhang Y, Wang L, Li X, Li W, Wang F, Li X (2014) Molecular analysis of hyperthermophilic endoglucanase Cel12B from Thermotoga maritima and the properties of its functional residues. BMC Struct Biol 14:8

    Article  Google Scholar 

  • Silva VF, Arruda PV, Felipe MG, Gonçalves AR, Rocha GJ (2011) Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J Ind Microbiol Biotechnol 38(7):809–817

    Article  CAS  Google Scholar 

  • Te’o VSJ, Saul DJ, Bergquist PL (1995) CelA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43:291–296

    Article  Google Scholar 

  • Vallander L, Eriksson KE (1985) Enzymic saccharification of pretreated wheat straw. Biotechnol Bioeng 27(5):650–659

    Article  CAS  Google Scholar 

  • Várnai A, Tang C, Bengtsson O, Atterton A, Mathiesen G, Vincent GH (2014) Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microb Cell Fact 13:57

    Article  Google Scholar 

  • Watson BJ, Haitao Z, Atkinson GL, Young HM, Steven WH (2009) Processive Endoglucanases Mediate Degradation of Cellulose by Saccharophagus degradans. J Bacteriol 191(18):5697–5705

    Article  CAS  Google Scholar 

  • Wei KSC, Teoh TC, Koshy P, Salmah I, Zainudin A (2015) Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli. Electro J Biotechnol 18:103–109

    Article  CAS  Google Scholar 

  • Wolfgang DE, Wilson DB (1999) Mechanistic studies of active site mutants of Thermomonospora fusca endocellulase E2. Biochemistry 38:9746–9751

    Article  CAS  Google Scholar 

  • Wonganu B, Pootanakit K, Booyapakron K, Champreda V, Tanaponqpipat S, Eurwilaichitr L (2008) Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expr Purif 58:78–86

    Article  CAS  Google Scholar 

  • Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ (2013) Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels 6:136

    Article  CAS  Google Scholar 

  • Zafar M, Ahmed S, Khan MI, Jamil A (2014) Recombinant expression and characterization of a novel endoglucanase from Bacillus subtilis in Escherichia coli. Mol Biol Rep 41:3295–3302

    Article  CAS  Google Scholar 

  • Zhang X-Z, Sathitsuksanoh N, Zhang Y-HP (2010) Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: Heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresour Technol 101:5534–5538

    Article  CAS  Google Scholar 

  • Zheng B, Yang W, Wang Y, Feng Y, Lou Z (2009) Crystallization and preliminary crystallographic analysis of thermophilic cellulase from Fervidobacterium nodosum Rt17-B1. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:219–222

    Article  CAS  Google Scholar 

  • Zhou WL, Irwin DC, Escovar-Kousen J, Wilson DB (2004) Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochem 43(30):9655–9663

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant No. 27(54)/2007-DSA (P&D) from the Ministry of Science and Technology, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikram ul Haq.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests. We assure the quality and integrity of our research work. This study is completely independent and impartial, all points taken from other authors are well cited in the text. The research work was financially funded by Ministry of Science and Technology, Pakistan.

Additional information

Ikram ul Haq and Fatima Akram have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, I.u., Akram, F., Khan, M.A. et al. CenC, a multidomain thermostable GH9 processive endoglucanase from Clostridium thermocellum: cloning, characterization and saccharification studies. World J Microbiol Biotechnol 31, 1699–1710 (2015). https://doi.org/10.1007/s11274-015-1920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1920-4

Keywords

Navigation