Skip to main content

Advertisement

Log in

Divergence in three newly identified Arthrospira species from Mexico

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Arthrospira (Spirulina) is a microalgae that has a unique set of biological characteristics which are very useful for a broad range of applications. Based on its worldwide requirements, this investigation was conducted to collect, isolate and identify the local Arthrospira strains in the central and western part of Mexico. We have successfully collected, isolated and identified (morphologically as well as molecularly) three Arthrospira strains from different regions in Mexico. Morphological studies were conducted by analyzing the size and shape of the helix, the spiral pattern, cell length and width with the help of light microscopy and for molecular analysis, the 16S rRNA and internally transcribed spacer (ITS, 16S-23 rRNA) gene partial sequence were used followed by phylogenetic analysis. The three species were completely different in their filament size and width whereas their ITS sequences were the same in size and more than 87 % similar in nucleotide sequence. The resulted morphological and phylogenetic analysis concluded that the three stains were identified as Arthrospira platensis. Inspite of their morphological variations and differences they were grouped genetically into one cluster along with the A. platensis of reported strains of Gene Bank database (NCBI). One of the isolated strains NPS-0, is probably the biggest Arthrospira strains ever reported and can be suitable for industrial scale biomass and protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anagnostidis K, Golubic S (1966) Uber die Okologieeiniger Spirulina-Arten. Nova Hedwig 11:309–335

    Google Scholar 

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch Hydrobiol Suppl 80:327–472

    Google Scholar 

  • Anderson T, Tang C, Ross E (1991) The xanthophylls of Spirulina and their effect on egg yolk pigmentation. Poult Sci 70:115–119

    Article  CAS  Google Scholar 

  • Baurain D, Renquin L, Grubisic S, Scheldeman P, Belay A, Wilmotte A (2002) Remarkable conservation of internally transcribed spacer sequences of Arthrospira (“Spirulina”) (Cyanophyceae, Cyanobacteria) strains from four continents and of recent and 30-year-old dried samples from African. J Phycol 38:384–393

    Article  CAS  Google Scholar 

  • Becker EW (1984) Nutritional properties of microalgal potentials and constraints. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press Inc, Boca Ratón, pp 339–408

    Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors. The earthrise farms experience. In: Vonshak A (ed) Spirulinaplatensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor and Francis, London, pp 131–158

    Google Scholar 

  • Borowitzka MA (1995) Microalgae as source of pharmaceuticals and other biologically active compounds. J Appl Physiol 7:3–15

    CAS  Google Scholar 

  • Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics. A case study in cyanobacteria. Mol Biol Evol 18:1057–1069

    Article  CAS  Google Scholar 

  • Castenholz RW (2001) General characteristics of the Cyanobacteria. In: Boone DR, Castenholz RW (eds) Bergey´s manual of systematic bacteriology. Second edition, volume 1. The archaea and the deeply branching and phototrophic bacteria. Springer, New York, pp 474–487

    Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    CAS  Google Scholar 

  • Costa JAV, Colla LM, Filho PFD (2004) Improving Spirulinaplatensis biomass yield using a fed-batch process. Bioresour Technol 92:237–241

    Article  CAS  Google Scholar 

  • Denis B, Laurent R, Stana G, Patsy S, Amha B, Annick W (2002) Remarkable conservation of internally transcribed spacer sequenced of Arthrospira (“Spirulina” ) (Cyanophycee, Cyanobacteria) strains from four continents and of recent and 30-year-old dried samples from Africa. J Phycology 38(2):384–393

  • Desikachary TV, Jeeji Bai N (1992) Taxonomic studies in Spirulina. In: Seshardi CV, Jeeji Bai N (eds.), Spirulina, ETTA National Symposium. MCRC, Madras, India, pp 12–21

  • Devereux R, He SH, Doyle CL, Orkland S, Stahl DA, LeGall J, Whitman WB (1990) Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172:3609–3619

    CAS  Google Scholar 

  • Dillon JC, Phan PA (1993). Spirulina as a source of proteins in human nutrition. In: Doumengue F, Durand-Chastel H, Toulemont A (eds.) Spirulinealgue de vie. MuséeOcéanographique. Bulletin de lInstitutOcéanographique. Monaco 12, pp 103–107

  • García-Rodríguez J, Molina-Astudillo FI, Quiroz Castelán H, Trujillo JP, Díaz VM (2011) Distribución y sistemática del fitoplancton a lo largo del río Amacuzac (Morelos, México). Acta Univ 21:11–23

    Google Scholar 

  • Gomont MM (1892) Monographie des Oscillariées (Nostocacéeshomocystées). Ann Sci Nat Bot 16:91–264

    Google Scholar 

  • Grinstead GS, Tokach MD, Goodband RD, Nelssen JL, Sawyer J, Maxwell K, Stott R, Moser A (1998) Influence of Spirulina platensis on growth performance of weanling pigs, In: Goodband BTMDS (ed) Kansas State University Swine Day 1998. Report of progress 819, Kansas, pp 67–74

  • Guglielmgi C (1982) Structure et distribution des pores et des perforations de l’enveloppe de peptidoglycane chez quelquescyanobactkries. Protistologica 18:151–165

    Google Scholar 

  • Herikson R (1994) Microalga Spirulina, superalimento del futuro, Ronore Enterprises, 2nd ed. Ediciones Urano, 222, Barcelona, España

  • Hirahashi T, Matsumoto M, Hazeki K, Saeki Y, Ui M, Seya T (2002) Activation of the human innate immune system by Spirulina: augmentation of interferon and NK cytotoxicity by oral administration of hot water extract of Spirulinaplatensis. Int Immunopharmacol 2:423–434

    Article  CAS  Google Scholar 

  • Holman BWB, Kashani A, Malau-Aduli AEO (2012) Growth and body conformation responses of genetically divergent Australian sheep to Spirulina (Arthrospiraplatensis) supplementation. Am J Exp Agric 2:160–173

    Article  Google Scholar 

  • Jiménez C, Cossío BR, Niell FX (2003) The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 221:331–345

    Article  Google Scholar 

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529

    Article  CAS  Google Scholar 

  • Komárek J (1992) Diversita a moderníklasifikacesinic (Cyanoprocaryota) [Diversity and modern classification of Cyanobacteria (Cyanoprokaryota)]. Inaugural dissertation not published

  • Komárek J, Komárková J (2002) Contribution to the knowledge of planktic cyanoprokaryotes from central Mexico. Preslia 74:207–233

    Google Scholar 

  • Komarek J, Komakova-Legnerova J, Sant Anna CL, Azevedo MTP, Senna PAC (2002) Two common Microcystis species (Chroococcales, Cyanobacteria) from tropical America, including M. panniformissp. nov. Cryptogam Algol 23:159–177

    Google Scholar 

  • Komark J, Lund JWG (1990) What is ‘Spirulinaplatensis’ in fact? Algological Studies, 58. Archiv fur Hydrobiologie Supplement band 85, pp 1–13

  • Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  Google Scholar 

  • Kwei CK, Lewis D, King K, Donohue W, Neilan BA (2011) Molecular classification of commercial Spirulina strains and identification of their sulfolipid biosynthesis genes. J Microbiol Biotechnol 21:359–365

    CAS  Google Scholar 

  • Li RH, Debelia HJ, Carmichael WW (2001) Isolates identifiable as Arthrospira maxima and Arthrospira fusiformis (Oscillatoriales, Cyanobacteria) appear identical on the basis of a morphological study in culture and 16S rRNA gene sequences. Phycologia 40:367–371

    Article  Google Scholar 

  • Ludwig W, Klenk HP (2001) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In: Boone DR, Castenholz RW (eds) Bergey´s manual of systematic bacteriology. The Archaea and the deeply branching and phototrophic bacteria, vol 1, 2nd edn. Springer, New York, pp 49–65

    Google Scholar 

  • Ludwig W, Schlfifer KH (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microb Rev 15:155–173

    Article  CAS  Google Scholar 

  • Matsui MS, Muizzuddin N, Arad S, Marenus K (2003) Sulfated polysaccharides from red microalgae have anti-inflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 104:13–22

    Article  CAS  Google Scholar 

  • Mishima T, Murata J, Toyoshima M, Fuji H, Nakajima M, Hayashi T, Kato T, Saiki I (1998) Inhibition of tumor invasion and metastasis by calcium Spirulina (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga Spirulinaplatensis. Clin Exp Metastasis 16:541–550

    Article  CAS  Google Scholar 

  • Morais MG , Stillings C, Dersch R, Rudisile M, Pranke P, Costa JA, Wendorff J (2010) Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol 101(8):2872–2876

  • Mora-Navarro Vázquez-García, Vargas-Rodríguez Hernández-Herrera (2006) Algas del Occidente de México: Florística y Ecología. Universidad de Guadalajara, Mexico

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    Article  CAS  Google Scholar 

  • Nelissen B, Wilmotte A, Neefs JM, De Wachter R (1994) Phylogenetic relationships among filamentous helical cyanobacteria investigated on the basis of 16S ribosomal RNA gene sequence analysis. Syst Appl Microbiol 17:206–210

    Article  CAS  Google Scholar 

  • Premanandh J, Priya B, Teneva I, Dzhambazov B, Prabaharan D, Uma L (2006) Molecular characterization of marine cyanobacteria from the Indian subcontinent deduced from sequence analysis of the phycocyanin operon (cpcB-IGS-cpcA) and 16S-23S ITS region. J Microbiol 44:607–616

    CAS  Google Scholar 

  • Richmond A (1992) Mass culture of cyanobacteria. In: Mann N, Carr N (eds) Photosynthetic prokaryotes, 2nd edn. Plenum press, New York, pp 181–210

    Chapter  Google Scholar 

  • Rout NP, KhandualS Gutierrez-Mora A, Gallardo-Valdéz J, Rodriguez-Garay B, Ibarra-Montoya JL, Vega-Valero G (2013) Isolation identification and germplasm preservation of different native Spirulina species from Western Mexico. Am J Plant Sci 4:65–71

    Article  Google Scholar 

  • Sanchez Martha et al (2003) Spirulina (Arthrospira): an edible micro-organism: a review. Univ Sci 8:7–24

    Google Scholar 

  • Scheldeman P, Baurain D, Bouhy R, Scott M, Muhling M, Whitton BA, Belay A, Wilmotte A (1999) Arthrospira (“Spirulina”) strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbial Lett 172:213–222

    Article  CAS  Google Scholar 

  • Simkus A, Oberauskas V, Laugalis J (2007) The effect of Spirulina Platensison the milk production in cows. Veterinarijairzootechnika, Kaunas 38:74–77

    Google Scholar 

  • Stackeberandt E, Gobel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition and bacteriology. Int J Bacteriol 44:846–849

    Article  Google Scholar 

  • Takashi S (2003) Effect of administration of Spirulina on egg quality and egg components. Animal Husbandry 57:191–195

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tomaselli L (1997) Morphology, ultrastructure and taxonomy. In: Vonshak A (ed) Spirulina platensis (Arthrospira) physiology, cell-biology and biotechnology. Taylor and Francis, London, pp 1–15

    Google Scholar 

  • Toyomizu M, Sato K, Taroda H, Kato T, Akiba Y (2001) Effects of dietary Spirulina on meat colour in muscle of broiler chickens. Br Poult Sci 42:197–202

    Article  CAS  Google Scholar 

  • Van Eykelenburg C (1979) The ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie Van Leeuwenhoek 45:369–390

    Article  Google Scholar 

  • Venkataraman LV, Somasekaran T, Becker EW (1994) Replacement value of blue-green alga (Spirulinaplatensis) for fishmeal and a vitamin-mineral premix for broiler chicks. Br Poult Sci 35:373–381

    Article  CAS  Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. The molecular biology of cyanobacteria 1–25. Kluwer Academic Publishers, Dordrecht

Download references

Acknowledgments

We thank the CONACYT (Consejo Nacional de Ciencia y Tecnología) for financial support (Grant PROINNOVA-175910, 158215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghamitra Khandual.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, N.P., Khandual, S., Gutierrez-Mora, A. et al. Divergence in three newly identified Arthrospira species from Mexico. World J Microbiol Biotechnol 31, 1157–1165 (2015). https://doi.org/10.1007/s11274-015-1865-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1865-7

Keywords

Navigation