Skip to main content
Log in

The influence of nickel on the bioremediation of multi-component contaminated tropical soil: microcosm and batch bioreactor studies

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Large petrochemical discharges are responsible for organic and inorganic pollutants in the environment. The purpose of this study was to evaluate the influence of nickel, one of the most abundant inorganic element in crude oil and the main component of hydrogen catalysts for oil refining, on the microbial community structure in artificially petroleum-contaminated microcosms and in solid phase bioreactor studies. In the presence of metals, the oil biodegradation in microcosms was significantly delayed during the first 7 days of operation. Also, increasing amounts of moisture generated a positive influence on the biodegradation processes. The oil concentration, exhibiting the most negative influence at the end of the treatment period. Molecular fingerprinting analyses (denaturing gradient gel electrophoresis—DGGE) indicated that the inclusion of nickel into the contaminated soil promoted direct changes to the microbial community structure. By the end of the experiments, the results of the total petroleum hydrocarbons removal in the bioreactor and the microcosm were similar, but reductions in the treatment times were observed with the bioreactor experiments. An analysis of the microbial community structure by DGGE using various markers showed distinct behaviors between two treatments containing high nickel concentrations. The main conclusion of this study was that Nickel promotes a significant delay in oil biodegradation, despite having only a minor effect over the microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adesodun JK, Mbagwu JSC (2008) Distribution of heavy metals and hydrocarbon contents in an alfisol contaminated with waste-lubricating oil amended with organic wastes. Bioresour Technol 99:3195–3204. doi:10.1016/j.biortech.2007.05.048

    Article  CAS  Google Scholar 

  • Alisi C, Musella R, Tasso F et al (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032. doi:10.1016/j.scitotenv.2009.01.011

    Article  CAS  Google Scholar 

  • Almeida R, Mucha AP, Teixeira C et al (2013) Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence. Biodegradation 24:111–123. doi:10.1007/s10532-012-9562-9

    Article  CAS  Google Scholar 

  • Amado-Filho G, Salgado L, Rebelo M et al (2008) Heavy metals in benthic organisms from Todos os Santos Bay, Brazil. Braz J Biol 68:95–100

    Article  CAS  Google Scholar 

  • Amor L, Kennes C, Veiga MC (2001) Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresour Technol 78:181–185

    Article  CAS  Google Scholar 

  • Atagana HI (2010) Bioremediation of Co-contamination of Crude oil and heavy metals in soil by phytoremediation using Chromolaena odorata (L) King & H.E. Robinson. Water Air Soil Pollut 215:261–271. doi:10.1007/s11270-010-0476-z

    Article  Google Scholar 

  • Biasioli M, Barberis R, Ajmone-Marsan F (2006) The influence of a large city on some soil properties and metals content. Sci Total Environ 356:154–164. doi:10.1016/j.scitotenv.2005.04.033

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Cunha CD (2004) Avaliação de diferentes tecnologias de biorremediação de água subterrânea contaminada com gasolina e análise molecular da comunidade bacteriana presente. 176

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Metal-contaminated soils: remediation practices and treatment technologies. Pract Period Hazardous Toxic Radioact Waste Manag 12:188. doi:10.1061/(ASCE)1090-025X(2008)12:3(188)

    Article  CAS  Google Scholar 

  • Dobler R, Saner M, Bachofen R (2000) Population changes of soil microbial communities induced by hydrocarbon and heavy metal contamination. Bioremediat J 4:41–56. doi:10.1080/10588330008951131

    Article  CAS  Google Scholar 

  • Galvez-Cloutier R, Dube JS (2002) Impact of residual NAPL on water flow and heavy metal transfer in a multimodal grain size soil under saturation conditions: Implications for contaminant mobility. ASTM Spec Tech Publ 126–137

  • Gillespie IMM, Philp JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31:329–332. doi:10.1016/j.tibtech.2013.01.015

    Article  CAS  Google Scholar 

  • Gomes NCM, Heuer H, Schönfeld J et al (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. 167–180

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electrón 4:1–9

    Google Scholar 

  • Heuer H, Krsek M, Baker P et al (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  Google Scholar 

  • Ke L, Luo L, Wang P et al (2010) Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresour Technol 101:6961–6972. doi:10.1016/j.biortech.2010.04.011

    Google Scholar 

  • Knox EG, Gilman E (1997) Hazard proximities of childhood cancers in Great Britain from 1953-80. J Epidemiol Community Health 51:151–159

    Article  CAS  Google Scholar 

  • Kozdrój J, van Elsas JD (2001) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods 43:197–212

    Article  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Ledin M, Pedersen K (1996) The environmental impact of mine wastes—roles of microorganisms and their significance in treatment of mine wastes 41:67–108

    CAS  Google Scholar 

  • Maila M, Cloete T (2005) The use of biological activities to monitor the removal of fuel contaminants—perspective for monitoring hydrocarbon contamination: a review. Int Biodeterior Biodegrad 55:1–8. doi:10.1016/j.ibiod.2004.10.003

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B (2003) Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ Int 28:719–728. doi:10.1016/S0160-4120(02)00117-4

    Article  CAS  Google Scholar 

  • Mühling M, Woolven-Allen J, Murrell JC, Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2:379–392. doi:10.1038/ismej.2007.97

    Article  Google Scholar 

  • Nadal M, Schuhmacher M, Domingo JL (2007) Levels of metals, PCBs, PCNs and PAHs in soils of a highly industrialized chemical/petrochemical area: temporal trend. Chemosphere 66:267–276. doi:10.1016/j.chemosphere.2006.05.020

    Article  CAS  Google Scholar 

  • Oyetibo GO, Ilori MO, Obayori OS, Amund OO (2013) Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt. J Basic Microbiol. doi:10.1002/jobm.201200151

    Google Scholar 

  • Rizzo ACDL, dos Santos RDM, dos Santos RLC et al (2010) Petroleum-contaminated soil remediation in a new solid phase bioreactor. J Chem Technol Biotechnol 85:1260–1267. doi:10.1002/jctb.2425

    Article  CAS  Google Scholar 

  • Roelofsen A, Boon WPC, Kloet RR, Broerse JEW (2011) Stakeholder interaction within research consortia on emerging technologies: learning how and what ? Res Policy 40:341–354. doi:10.1016/j.respol.2010.10.015

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • USEPA (1996) Cleaning up the nation’s waste sites: markets and technology trends, 1996 edition. Washington, DC

  • USEPA (2004) Cleaning up the nation’s waste sites: markets and technology trends, 4th edn. Washington, DC

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549. doi:10.1128/MMBR.67.4.503

    Article  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250. doi:10.1021/bp00033a001

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. doi:10.1016/j.biotechadv.2008.11.002

    Article  Google Scholar 

  • Watanabe K, Hamamura N (2003) Molecular and physiological approaches to understanding the ecology of pollutant degradation. Curr Opin Biotechnol 14:289–295. doi:10.1016/S0958-1669(03)00059-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation to the Ministry of Science Technology and Innovation (MCTI) for the infrastructure support and Adriana Ururahy Soriano from Petrobras for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Franco Taketani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taketani, N.F., Taketani, R.G., Leite, S.G.F. et al. The influence of nickel on the bioremediation of multi-component contaminated tropical soil: microcosm and batch bioreactor studies. World J Microbiol Biotechnol 31, 1127–1135 (2015). https://doi.org/10.1007/s11274-015-1862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1862-x

Keywords

Navigation