Skip to main content

Advertisement

Log in

A European epidemiological survey of Vibrio splendidus clade shows unexplored diversity and massive exchange of virulence factors

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Vibrio splendidus clade has previously been associated with epidemic outbreaks of various aquatic animals, as in the case of the cupped oyster, Crassostrea gigas. To investigate whether involved strains could present a clonal origin and to identify possible alternative background carriage animals or zooplankton, a large epidemiological survey was conducted on isolates of the splendidus clade. For this purpose, Vibrio strains were isolated from various samples including oysters, mussels, sediments, zooplankton, and sea water on the basis of a North/South gradient of the European sea water zone (Ireland, The Netherlands, France, Italy, and Spain). A total of 435 isolates were successfully associated to the V. splendidus clade using real time polymerase chain reaction with 16S specific primers and probes. A multiple-locus variable-number tandem-repeat analysis (VNTR) was conducted on all isolates based on a multiplex PCR–VNTR with a set of primer pairs designed from the V. tasmaniensis LGP32 genome. Preliminary validation of the primers on a set of collection strains from the V. splendidus clade confirmed that the former V. splendidus-related LGP32 and relative strains were related to V. tasmaniensis rather than to the type strain V. splendidus LMG 4042. The VNTR analysis was then successfully conducted on 335 isolates which led to the characterization of 87 different profiles. Our results showed that (1) the high diversity of VNTR did not enlighten significant correlation between a specific pattern and the origin of collected samples. However, populations isolated from animal samples tend to differ from those of the background environment; (2) oyster mortality events could not be linked to the clonal proliferation of a particular VNTR type. However, few different patterns seemed successively associated with samples collected during peaks of oyster’s mortality. (3) Finally, no correlation could be seen between specific VNTR patterns and sequence phylogeny of the virulence factors vsm and ompU that were detected among strains isolated during as well as outside mortality events. These results, combined with incongruence observed between the ompU and vsm phylogenetic trees, suggested both large diffusion of strains and massive lateral gene transfer within the V. splendidus clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  Google Scholar 

  • Baumann P, Baumann L, Bang SS, Woolkalis M (1980) Reevaluation of the taxonomy of Vibrio, beneckea, and Photobacterium: Abolition of the genus Beneckea. Curr Microbiol 4(3):127–132. doi:10.1007/BF02602814

  • Baumann P, Baumann L, Mandel M (1971) Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol 107(1):268–294. Retrieved from http://jb.asm.org/cgi/content/long/107/1/268

  • Beaz-Hidalgo R, Diéguez AL, Cleenwerck I, Balboa S, Doce A, de Vos P, Romalde JL (2010) Vibrio celticus sp. nov., a new Vibrio species belonging to the Splendidus clade with pathogenic potential for clams. Syst Appl Microbiol 33(6):311–315. doi:10.1016/j.syapm.2010.06.007

    Article  CAS  Google Scholar 

  • Benzecri J-P (1992) Correspondence analysis handbook. Marcel Dekker, New York, p 688

    Google Scholar 

  • Binesse J, Delsert C, Saulnier D, Champomier-Vergès M-C, Zagorec M, Munier-Lehmann H, Le Roux F (2008) Metalloprotease vsm is the major determinant of toxicity for extracellular products of Vibrio splendidus. Appl Environ Microbiol 74(23):7108–7117. doi:10.1128/AEM.01261-08

    Article  CAS  Google Scholar 

  • Borrego JJ, Castro D, Luque A, Paillard C, Maes P, Garcia MT, Ventosa A (1996) Vibrio tapetis sp. nov., the Causative Agent of the Brown Ring Disease Affecting Cultured Clams. Int J Syst Bacteriol 46(2), 480–484. doi:10.1099/00207713-46-2-480

  • Broza YY, Danin-Poleg Y, Lerner L, Valinsky L, Broza M, Kashi Y (2009) Epidemiologic study of Vibrio vulnificus infections by using variable number tandem repeats. Emerg Infect Dis 15(8):1282–1285. doi:10.3201/eid1508.080839

    Article  Google Scholar 

  • Burt C (1950) The factorial analysis of qualitative data. Br J Stat Psychol 3(3):166–185

    Article  Google Scholar 

  • Carlo HRH, Peter MJ, Soetaert HK (1998) Indices of diversity and evenness *. Océanis 24(4):61–87

    Google Scholar 

  • Chen M, Li L-P, Wang R, Liang W-W, Huang Y, Li J, Gan X (2012) PCR detection and PFGE genotype analyses of streptococcal clinical isolates from tilapia in China. Vet Microbiol 159(3–4):526–530. doi:10.1016/j.vetmic.2012.04.035

    Article  CAS  Google Scholar 

  • Comps M (1988) Epizootie diseases of oysters associated with viral infections. Am Fish Soc 18:23–37 (Elston 1979)

    Google Scholar 

  • Cooper JE, Feil EJ (2004) Multilocus sequence typing—what is resolved? Trends Microbiol 12(8):373–377. doi:10.1016/j.tim.2004.06.003

    Article  CAS  Google Scholar 

  • Diéguez AL, Beaz-Hidalgo R, Cleenwerck I, Balboa S, de Vos P, Romalde JL (2011) Vibrio atlanticus sp. nov. and Vibrio artabrorum sp. nov., isolated from the clams Ruditapes philippinarum and Ruditapes decussatus. Int J Syst Evol Microbiol 61(Pt 10):2406–2411. doi:10.1099/ijs.0.025320-0

    Article  Google Scholar 

  • Domeneghetti S, Varotto L, Civettini M, Rosani U, Stauder M, Pretto T, Venier P (2014) Mortality occurrence and pathogen detection in Crassostrea gigas and Mytilus galloprovincialis close-growing in shallow waters (Goro lagoon, Italy). Fish Shellfish Immunol. doi:10.1016/j.fsi.2014.05.023

    Google Scholar 

  • Duperthuy M, Binesse J, Le Roux F, Romestand B, Caro A, Got P, Destoumieux-Garzón D (2010) The major outer membrane protein OmpU of Vibrio splendidus contributes to host antimicrobial peptide resistance and is required for virulence in the oyster Crassostrea gigas. Environ Microbiol 12(4):951–963. doi:10.1111/j.1462-2920.2009.02138.x

    Article  CAS  Google Scholar 

  • Elston R, Leibovitz L (1980) Pathogenesis of experimental vibriosis in larval American oysters, Crassostrea virginica. Can J Fish Aquat Sci 37(6):964–978. doi:10.1139/f80-126

    Article  Google Scholar 

  • Gatesoupe FJ, Lambert C, Nicolas JL (1999) Pathogenicity of Vibrio splendidus strains associated with turbot larvae, Scophthalmus maximus. J Appl Microbiol 87(5):757–763. doi:10.1046/j.1365-2672.1999.00922.x

    Article  Google Scholar 

  • Gay M, Renault T, Pons A-M, Le Roux F (2004) Two vibrio splendidus related strains collaborate to kill Crassostrea gigas: taxonomy and host alterations. Dis Aquat Organ 62(1–2):65–74. doi:10.3354/dao062065

    Article  Google Scholar 

  • Gómez-León J, Villamil L, Lemos ML, Novoa B, Figueras A (2005) Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl Environ Microbiol 71(1):98–104. doi:10.1128/AEM.71.1.98-104.2005

    Article  Google Scholar 

  • Goo SY, Lee H-J, Kim WH, Han K-L, Park D-K, Lee H-J, Park S-J (2006) Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun 74(10):5586–5594. doi:10.1128/IAI.00171-06

    Article  CAS  Google Scholar 

  • Goudenège D, Labreuche Y, Krin E, Ansquer D, Mangenot S, Calteau A, Le Roux F (2013) Comparative genomics of pathogenic lineages of Vibrio nigripulchritudo identifies virulence-associated traits. ISME J 7(10):1985–1996. doi:10.1038/ismej.2013.90

    Article  Google Scholar 

  • Faury N, Saulnier D, Thompson FL, Gay M, Swings J, Le Roux F (2004) Vibrio crassostreae sp. nov., isolated from the haemolymph of oysters (Crassostrea gigas). Intl J Syst Evolut Microbiol 54(6):2137–2140. doi:10.1099/ijs.0.63232-0

  • Hedlund B, Staley J (2001) Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int J Syst Evol Microbiol 51(1):61–66. doi:10.1099/00207713-51-1-61

  • Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF (2008) Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320(5879):1081–1085. doi:10.1126/science.1157890

  • Kattar MM, Jaafar RF, Araj GF, Le Flèche P, Matar GM, Abi Rached R, Vergnaud G (2008) Evaluation of a multilocus variable-number tandem-repeat analysis scheme for typing human Brucella isolates in a region of brucellosis endemicity. J Clin Microbiol 46(12):3935–3940. doi:10.1128/JCM.00464-08

    Article  Google Scholar 

  • Kim D, Baik KS, Hwang YS, Choi JS, Kwon J, Seong CN (2013) Vibrio hemicentroti sp. nov., an alginate lyase producing bacterium, isolated from the gut microflora of sea urchin (Hemicentrotus pulcherrimus). Int J Syst Evol Microbiol. doi:10.1099/ijs.0.047951-0

    Google Scholar 

  • Kimura B, Sekine Y, Takahashi H, Tanaka Y, Obata H, Kai A, Fujii T (2008) Multiple-locus variable-number of tandem-repeats analysis distinguishes Vibrio parahaemolyticus pandemic O3:K6 strains. J Microbiol Methods 72(3):313–320. doi:10.1016/j.mimet.2007.12.014

    Article  CAS  Google Scholar 

  • Lacoste A, Jalabert F, Malham S, Cueff A, Gélébart F, Cordevant C, Poulet SA (2001) A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis Aquat Organ 46(2):139–145. doi:10.3354/dao046139

    Article  CAS  Google Scholar 

  • Lasa A, Diéguez AL, Romalde JL (2013) Vibrio toranzoniae sp. nov., a new member of the Splendidus clade in the genus Vibrio. Syst Appl Microbiol 36(2):96–100. doi:10.1016/j.syapm.2012.11.005

    Article  Google Scholar 

  • Lê S, Josse J, Husson H (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):1–18

    Google Scholar 

  • Le Roux F, Gay M, Lambert C, Nicolas JL, Gouy M, Berthe F (2004) Phylogenetic study and identification of Vibrio splendidus-related strains based on gyrB gene sequences. Dis Aquat Organ 58:143–150

    Article  Google Scholar 

  • Le Roux F, Gay M, Lambert C, Waechter M, Poubalanne S, Chollet B, Berthe F (2002) Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat Living Ressour 15:251–258

    Article  Google Scholar 

  • Le Roux F, Goubet A, Thompson FL, Faury N, Gay M, Swings J, Saulnier D (2005) Vibrio gigantis sp. nov., isolated from the haemolymph of cultured oysters (Crassostrea gigas). Int J Syst Evolut Microbiol 55(6):2251–2255. doi:10.1099/ijs.0.63666-0

  • Le Roux F, Binesse J, Saulnier D, Mazel D (2007) Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector. Appl Environ Microbiol 73(3):777–784. doi:10.1128/AEM.02147-06

    Article  Google Scholar 

  • Le Roux F, Zouine M, Chakroun N, Binesse J, Saulnier D, Bouchier C, Mazel D (2009) Genome sequence of Vibrio splendidus: an abundant planctonic marine species with a large genotypic diversity. Environ Microbiol 11(8):1959–1970. doi:10.1111/j.1462-2920.2009.01918.x

    Article  Google Scholar 

  • Lindstedt B-A (2005) Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26(13):2567–2582. doi:10.1002/elps.200500096

    Article  CAS  Google Scholar 

  • Lipp EK, Rodriguez-Palacios C, Rose J (2001) Occurrence and distribution of the human pathogen Vibrio vulnificus in a subtropical Gulf of Mexico estuary. Ecol Etiol Newly Emerg Mar Dis 159:165–173

    Article  Google Scholar 

  • Liu R, Qiu L, Yu Z, Zi J, Yue F, Wang L, Song L (2013) Identification and characterisation of pathogenic Vibrio splendidus from Yesso scallop (Patinopecten yessoensis) cultured in a low temperature environment. J Invertebr Pathol 114(2):144–150. doi:10.1016/j.jip.2013.07.005

    Article  Google Scholar 

  • Lutthisungnoen A, Kondo S, Udomsopagit S, Smittipat N, Palittaponkarnpim P (2008) Characterization of vibrio cholerae O 1 isolated during 2001–2004 by Variable Number of Tandem Repeat (VNTR) typing. Thammasat Med J 8:274–281

    Google Scholar 

  • Macian M, Ludwig W, Aznar R, Grimont P, Schleifer K, Garay E, Pujalte M (2001) Vibrio lentus sp. nov., isolated from Mediterranean oysters. Int J Syst Evol Microbiol 51(4):1449–1456. doi:10.1099/00207713-51-4-1449

    CAS  Google Scholar 

  • Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci 95(6):3140–3145. doi:10.1073/pnas.95.6.3140

    Article  CAS  Google Scholar 

  • Mathur J, Waldor MK (2004) The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun 72(6):3577–3583. doi:10.1128/IAI.72.6.3577-3583.2004

    Article  CAS  Google Scholar 

  • Mathur J, Davis BM, Waldor MK (2007) Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway. Mol Microbiol 63(3):848–858. doi:10.1111/j.1365-2958.2006.05544.x

    Article  CAS  Google Scholar 

  • Meistertzheim A-L, Arnaud-Haond S, Boudry P, Thébault M-T (2013) Genetic structure of wild European populations of the invasive Pacific oyster Crassostrea gigas due to aquaculture practices. Mar Biol 160(2):453–463. doi:10.1007/s00227-012-2102-7

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76(10):5269–5273. doi:10.1073/pnas.76.10.5269

    Article  CAS  Google Scholar 

  • Nicolas JL, Corre S, Gauthier G, Robert R, Ansquer D (1996) Bacterial problems associated with scallop Pecten maximus larval culture. Dis Aquat Organ 27:67–76 (Standiford 1985)

    Article  Google Scholar 

  • Olsen JS, Aarskaug T, Skogan G, Fykse EM, Ellingsen AB, Blatny JM (2009) Evaluation of a highly discriminating multiplex multi-locus variable-number of tandem-repeats (MLVA) analysis for Vibrio cholerae. J Microbiol Methods 78(3):271–285. doi:10.1016/j.mimet.2009.06.011

    Article  CAS  Google Scholar 

  • Pang B, Yan M, Cui Z, Ye X, Diao B, Ren Y, Kan B (2007) Genetic diversity of toxigenic and nontoxigenic Vibrio cholerae serogroups O1 and O139 revealed by array-based comparative genomic hybridization. J Bacteriol 189(13):4837–4849. doi:10.1128/JB.01959-06

    Article  CAS  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290. doi:10.1093/bioinformatics/btg412

    Article  CAS  Google Scholar 

  • Preheim SP, Timberlake S, Polz MF (2011). Merging taxonomy with ecological population prediction in a case study of Vibrionaceae. Appl Environ Microbiol 77(20):7195–206. doi:10.1128/AEM.00665-11

  • Saulnier D, De Decker S, Haffner P, Cobret L, Robert M, Garcia C (2010) A large-scale epidemiological study to identify bacteria pathogenic to Pacific oyster Crassostrea gigas and correlation between virulence and metalloprotease-like activity. Microb Ecol 59(4):787–798. doi:10.1007/s00248-009-9620-y

    Article  Google Scholar 

  • Saulnier D, Travers MA, De Decker S (n.d.) Development of a duplex real-time PCR assay for rapid identification of Vibrio splendidus-related and V. aestuarianus strains from bacterial colony. See Related SOPs at http://www.eurl-mollusc.eu/SOPs

  • Sawabe T, Kita-Tsukamoto K, Thompson FL (2007) Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189(21):7932–7936. doi:10.1128/JB.00693-07

    Article  CAS  Google Scholar 

  • Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR, Mino S, Hayashi T (2013) Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol 4:414. doi:10.3389/fmicb.2013.00414

    Article  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Shekar M, Acharya S, Karunasagar I, Karunasagar I (2008) Variable repeat regions in the genome of Vibrio vulnificus and polymorphism in one of the loci in strains isolated from oysters. Int J Food Microbiol 123(3):240–245. doi:10.1016/j.ijfoodmicro.2008.02.008

    Article  CAS  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688. doi:10.1038/163688a0

    Article  Google Scholar 

  • Stine OC, Alam M, Tang L, Sack RB, Morris JG (2008) Seasonal cholera from multiple small outbreaks, Rural Bangladesh. Emerg Infect Dis 14(5):831–833

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  Google Scholar 

  • Teh CSJ, Chua KH, Thong KL (2010) Multiple-locus variable-number tandem repeat analysis of Vibrio cholerae in comparison with pulsed field gel electrophoresis and virulotyping. J Biomed Biotechnol 2010:817190. doi:10.1155/2010/817190

    Article  Google Scholar 

  • Thompson FL (2003a) Vibrio fortis sp. nov. and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. Int J Syst Evol Microbiol 53(5):1495–1501. doi:10.1099/ijs.0.02658-0

    Article  CAS  Google Scholar 

  • Thompson FL (2003b) Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int J Syst Evol Microbiol 53(3):753–759. doi:10.1099/ijs.0.02490-0

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics/Editoral Board, Andreas D. Baxevanis… [et al.], Chapter 2. doi:10.1002/0471250953.bi0203s00

  • Thompson FL, Thompson CC, Swings J (2003) Vibrio tasmaniensis sp. nov., isolated from Atlantic salmon (Salmo salar L.). Syst Appl Microbiol 26(1):65–69. doi:10.1078/072320203322337326

    Article  CAS  Google Scholar 

  • Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Polz MF (2005) Genotypic diversity within a natural coastal bacterioplankton population. Science 307:1311–1313. doi:10.1126/science.1106028

    Article  CAS  Google Scholar 

  • Tiston DL, Seidler RJ (1983) Vibrio aestuarianus: a New Species from Estuarine Waters and Shellfish. Int J Syst Bacteriol, 33(4), 699–702. doi:10.1099/00207713-33-4-699

  • Urwin R, Maiden MCJ (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. doi:10.1016/j.tim.2003.08.006

    Google Scholar 

  • Vanhove AS, Duperthuy M, Charrière GM, Le Roux F, Goudenège D, Gourbal B, Destoumieux-Garzón D (2014) Outer membrane vesicles are vehicles for the delivery of Vibrio tasmaniensis virulence factors to oyster immune cells. Environ Microbiol. doi:10.1111/1462-2920.12535

    Google Scholar 

  • Vezzulli L, Pezzati E, Stauder M, Stagnaro L, Venier P, Pruzzo C (2014) Aquatic ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus. Environ Microbiol. doi:10.1111/1462-2920.12484

    Google Scholar 

  • Vora GJ, Meador CE, Bird MM, Bopp CA, Andreadis JD, Stenger DA (2005) Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc Natl Acad Sci USA 102(52):19109–19114. doi:10.1073/pnas.0505033102

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  Google Scholar 

  • Waechter M, Le Roux F, Nicolas J-L, Marissal É, Berthe F (2002) Caractérisation de bactéries pathogènes de naissain d’huître creuse Crassostrea gigas. CR Biol 325(3):231–238. doi:10.1016/S1631-0691(02)01428-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been carried out in part with financial support from the Commission of the European Communities, under the EC’s Seventh Framework Program (FP7/2007-2013) in the grant funded “KBBE.2010.1.2-08: Improving European mollusc aquaculture: disease detection and management”. It does not necessarily reflect its views and in no way anticipates the Commission’s future policy in this area. We also aknowledge the EMIDA project MOLTRAQ for financial support, Egide for funding the Grant Number 18470SA, the CMCU for Grant Number 08G0908, and AUF for granting the second Ph.D. year from Hanen Nasfi. Finally, the data used in this work were partly produced through the technical facilities of the Centre Mediterranean Environment Biodiversity, University of Montpellier 2, France. Finally, special thanks to Mr. Marc Englezma for providing us with isolates from Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vallaeys.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11274_2015_1800_MOESM1_ESM.tif

Supplementary Fig. 1. Factor analysis of the VNTR data on 335 European V. splendidus isolates. Factor analysis was performed on the Burt table of VNTR-ompU- and vsm -PCR fragments obtained, and mortality data converted into binary data using code 1 or 0 according to presence or absence of each fragment. ND: not determined, It: Italy, Sp: Spain, Fr: France, Noth: Netherlands, Ir: Ireland, Dim 1 and 2: coordinates in the two most representative axis of the factor analysis. A. Projection of strains coordinates using geographical origin and VNTR patterns (1 to 87) as supplementary variable in the analysis. B. Projection of strains coordinates using sample type and VNTR pattern (1 to 87) as supplementary variable in the analysis. C. Projection of variables coordinates. Red dots: b1 to b16-VNTR bands; vsm and ompU virulence factors both representing variables with two modes (P: present, A: absent) and mortality outbreaks representing variables with 3 modes. (P: present, A: absent, NA: Not determined). Grey triangles: strains factorial coordinates are projected as above in S1A and S1B (TIFF 2444 kb)

Supplementary material 2 (TIFF 3764 kb)

Supplementary material 3 (TIFF 1955 kb)

Supplementary material 4 (TIFF 2812 kb)

Supplementary material 5 (TIFF 3539 kb)

Supplementary material 6 (TIFF 3217 kb)

Supplementary material 7 (TIFF 3653 kb)

11274_2015_1800_MOESM8_ESM.xls

Supplementary Table S1. Distribution of strains isolated (N = 435) by geographical origin and type of samples analyzed (XLS 21 kb)

11274_2015_1800_MOESM9_ESM.xls

Supplementary Table S2. Genbank accession numbers of ompU and vsm sequences from strains of the V. splendidus clade obtained in this study (XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasfi, H., Travers, M.A., de Lorgeril, J. et al. A European epidemiological survey of Vibrio splendidus clade shows unexplored diversity and massive exchange of virulence factors. World J Microbiol Biotechnol 31, 461–475 (2015). https://doi.org/10.1007/s11274-015-1800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1800-y

Keywords

Navigation