Skip to main content
Log in

Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acremonium implicatum is an endophytic fungus with biocontrol potential against Meloidogyne incognita based on its opportunistic egg-parasitic, hatching inhibition, and toxic properties. To understand its mode of plant endophytism and opportunistic egg parasitism, GFP-tagged A. implicatum was constructed by PEG-mediated protoplast transformation. By laser scanning confocal microscopy (LSCM), we evaluated the endophytism and opportunistic egg parasitism of a stable gfp transformant (Acr-1). Acr-1 could colonize epidermal tissue, cortical tissue, and xylem of roots and form a mutualistic symbiosis with tomato host plants. LSCM of Acr-1 infecting M. incognita eggs revealed that hyphae penetrated the shell and grew inside eggs to form trophic hyphae. A large number of hyphae enveloped parasitized eggs. In addition, the egg shell integrity was destroyed by fungal penetration. The percentage of egg parasitism was 33.8 %. There were no marked differences between the wild type and mutant in nematode second-stage juvenile mortality and egg hatching and in fungal control efficiency in a pot experiment. In conclusion, gfp-transformation did not change the nematicidal activity of A. implicatum and is a tool to examine the mode of plant endophytism and opportunistic egg parasitism of A. implicatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abello J, Kelemu S, Garic AC (2008) Agrobacterium-mediated transformation of the endophytic fungus Acremonium implicatum associated with Brachiaria grasses. Mycol Res 112:407–413

    Article  CAS  Google Scholar 

  • Breen JP (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423

    Article  Google Scholar 

  • Cook R, Lewis GC, Mize KA (1991) Effects on plant-parasitic nematodes of infection of perennial ryegrass, Lolium perenne, by the endophytic fungus, Acremonium lolii. Crop Prot 10:403–407

    Article  Google Scholar 

  • Elmi AA, West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131:61–67

    Article  Google Scholar 

  • Escudero N, Lopez-Llorca LV (2012) Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 57(1):33–42

    Article  Google Scholar 

  • Fincham JR (1989) Transformation in fungi. Microbiol Mol Biol R 53(1):148–170

    CAS  Google Scholar 

  • Goswami J, Pandey RK, Tewari JP, Goswami BK (2008) Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Health B 43:237–240

    Article  CAS  Google Scholar 

  • Hallmann J, Sikora RA (1994a) Influence of F. oxysporum, a mutualistic fungal endophyte, on M. incognita of tomato. J Plant Dis Prot 101:475–481

    Google Scholar 

  • Hallmann J, Sikora RA (1994b) Occurrence of plant-parasitic nematodes and nonpathogenic species of Fusarium in tomato plant in Kenya and their role as mutualistic synergists for biological control of root knot nematodes. Int J Pest Manag 40:321–325

    Article  Google Scholar 

  • Hallmann J, Sikora RA (2011) Endophytic fungi. Biol Control Plant Parasit Nematodes Prog Biol Control 11:227–258

    Article  Google Scholar 

  • Huang X, Zhao K (2004) Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res Microbiol 155:811–816

    Article  CAS  Google Scholar 

  • Kano S, Kurita T, Kanematsu S, Morinaga T (2011) Agrobacterium tumefaciens-mediated transformation of the violet root-rot fungus, Helicobasidium mompa, and the effect of activated carbon. Mycoscience 52:24–30

    Article  CAS  Google Scholar 

  • Lin S, Wu X, Cao JZ, Wang FL (2013) Biocontrol potential of chitinase-producing nematophagous fungus Acremonioum implicatum against Meloidogyne incognita. Acta Phytopathol Sin 43(5):509–517

    Google Scholar 

  • Lopez-Llorca LV, Claugher D (1990) Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron Microscoc Acta 21(3):125–130

  • Mejia LC, Rojas EI, Maynard Z, Bael SV, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogen. Biol Control 46:4–14

    Article  Google Scholar 

  • Meyer V (2008) BGenetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv 26:177–185

    Article  CAS  Google Scholar 

  • Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48(1):1–17

    Article  CAS  Google Scholar 

  • Moosavi MR, Zare R, Zananizaeh HR, Fatemy S (2010) Pathogenicity of Pochonia species on eggs of Meloidogyne javanica. J Invertebr Pathol 104:125–133

    Article  Google Scholar 

  • Mukherjee S, Dawe A, Creamer R (2010) Development of a transformation system in the swainsonine producing, slow growing endophytic fungus, Undifilum oxytropis. J Microbiol Methods 81:160–165

    Article  CAS  Google Scholar 

  • Nguyen DMC, Seo DJ, Kim KY, Park RD, Kim DH, Han YS, Kim TH, Jung WJ (2013) Nematicidal activity of 3,4-dihydroxybenzoic acid purified from Terminalia nigrovenulosa bark against Meloidogyne incognita. Microb Pathog 59–60:52–59

    Article  Google Scholar 

  • Nitao JK, Meyer SLF, Chitwood DJ (1999) In-vitro assays of Meloidogyne incognita and Heterodera glycines for detection for nematode-antagonistic fungal compounds. J Nematol 31:172–183

    CAS  Google Scholar 

  • Noling JW, Becker JO (1994) The challenge of research and extension to define and implement alternatives to methylbromide. J Nematol 26(4S):573–586

    CAS  Google Scholar 

  • Parsons KA, Chumley FG, Valent B (1987) Genetic transformation of the fungal pathogen responsible for rice blast disease. PNAS 84(12):4161–4165

    Article  CAS  Google Scholar 

  • Pedersen JF, Kabana RR, Shelby RA (1988) Ryegrass cultivars and endophyte in tall fescue affect nematodes in grass and succeeding soybean. Agron J 80:811–814

    Article  Google Scholar 

  • Raps A, Vidal S (1998) Indirect effects of unspecialized endophytic fungus on specialized plant–herbivorous insect interaction. Oecologia 114:41–547

    Article  Google Scholar 

  • Rolland S, Jobic C, Fevre M, Brue C (2003) Agrobacterium-mediated transformation of Botrytis cinerea, simple purification on monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr Genet 44:164–171

    Article  CAS  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interaction with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saucedo-García A, Anaya AL, Espinosa-García FJ, González MC (2014) Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico. PLoS One 9(6):1–11

    Article  Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the control of plant parasitic nematodes. Annu Rev Phytopathol 12:245–270

    Article  Google Scholar 

  • Sikora RA, Pocasangre L, Felde AZ, Niere B, Vu TT, Dababat AA (2008) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46:15–23

    Article  Google Scholar 

  • Singh S, Mathur N (2010) In vitro studies of antagonistic fungi against the root-knot nematode, Meloidogyne incognita. Biocontrol Sci Technol 20:275–282

    Article  Google Scholar 

  • Souza AG, Herrero S, Maffia LA, Daub ME (2014) Methods for Cercospora coffeicola protoplast isolation and genetic transformation with the green fluorescent protein. Eur J Plant Pathol 139(2):241–244

    Article  CAS  Google Scholar 

  • Stewart TM (1993) Development of Meloidogyne naasi on endophyte-infected and endophyte-free perennial ryegrass. Australas Plant Pathol 22:40–41

    Article  Google Scholar 

  • Stirling GR, West LM (1991) Fungal parasites of root-knot nematode eggs from tropical and subtropicalregions of Australia. Australas Plant Path 20(4):149–154

  • Stöcker GG, Riediger N, Dietrich C (2007) Suitability of GFP-transformed isolates of the fungal root endophyte Acremonium strictum W. Gams for studies on induced Fusarium-wilt resistance in flax. Plant Root 1:46–56

    Article  Google Scholar 

  • Sun MH, Gao L, Shi YX, Li BJ, Li XZ (2006) Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. J Invertebr Pathol 93:22–28

    Article  Google Scholar 

  • Wang DY, He D, Li GQ, Gao S, Lv HY, Shan QS, Wang L (2014) An efficient tool for random insertional mutagenesis: agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus. J Microbiol Methods 98:114–118

    Article  CAS  Google Scholar 

  • Wesemael WML, Viaene N, Moens M (2011) Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology 13(1):3–16

  • Yang JK, Tian BY, Liang LM, Zhang KQ (2007) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Special Fund for Agro-scientific Research in the Public Interest (201103018), the National Natural Science Foundation of China (30971905, 31101418), and the earmarked fund for the China Agriculture Research System (CARS-25-B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Yan Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, YR., Tian, XL., Shen, BM. et al. Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita . World J Microbiol Biotechnol 31, 549–556 (2015). https://doi.org/10.1007/s11274-014-1781-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1781-2

Keywords

Navigation