Skip to main content
Log in

Effect of photosynthetic bacteria on water quality and microbiota in grass carp culture

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the effects of photosynthetic bacteria as additives on water quality, microbial community structure and diversity, a photosynthetic purple non-sulfur bacteria, Rhodopseudamonas palustris, was isolated and used to remove nitrogen in the aquaculture water. The results of water quality showed that the levels of ammonia nitrogen, nitrite nitrogen, total inorganic nitrogen and total nitrogen in the treatment group were significantly lower (p < 0.05) than the nitrogen levels of the controls in an extended range. A 454-pyrosequencing analysis revealed that at the level of phylum, Proteobacteria and Firmicutes were dominant in the control group respectively, compared to the dominance of the phyla Proteobacteria, Bacteroidetes and Actinobacteria in the treatment group. The relative abundance of phyla Bacteroidetes and Actinobacteria in treatment witnessed an increase than that in the control. The results also indicated that the treatment group enjoyed a higher microbial diversity than that of the control group. Based on the oxygen requirement and metabolism, the authors observed that the water supplementation with photosynthetic bacteria could significantly decrease (p < 0.05) the number of nitrite reducer and anaerobic bacteria. Therefore, the results suggested that adding photosynthetic bacteria to water improves the water quality as it changes the microbial community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Sinelnikov I, Budwill K, Nesbø CL, Wishart DS (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 40(W1):W88–W95

    Article  CAS  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288(7):4502–4512

    Article  CAS  Google Scholar 

  • Balcazar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186

    Article  Google Scholar 

  • Cao L, Wang WM (2010) Wastewater management in freshwater pond aquaculture in China. In: Fukushi K, Hassan KM, Honda R, Sumi A (eds) Sustainability in food and water alliance for global sustainability bookseries, vol 18(3). Springer, Berlin, pp 181–190

  • Cao L, Wang W, Yang Y, Yang C, Yuan Z, Xiong S, Diana J (2007) Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ Sci Pollut Res 14(7):452–462

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  Google Scholar 

  • DeAngelis KM, Wu CH, Beller HR, Brodie EL, Chakraborty R, DeSantis TZ, Fortney JL, Hazen TC, Osman SR, Singer ME, Tom LM, Andersen GL (2011) PCR amplification-independent methods for detection of microbial communities by the high-density microarray Phylochip. Appl Environ Microbiol 77(18):6313–6322

    Article  CAS  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280

    Article  Google Scholar 

  • FAO (2011) Biotechnologies for agricultural development. In: Proceedings of the FAO international technical conference on “agricultural biotechnologies in developing countries: options and opportunities in crops, forestry, livestock, fisheries and agro-industry to face the challenges of food insecurity and climate change” (ABDC-10), FAO, Rome

  • Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquaculture 180(1):147–165

  • Goodfellow M, Haynes JA (1984) Actinomycetes in marine sediments. In: Oritz-Oritz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic, New York, pp 453–472

    Chapter  Google Scholar 

  • He F, Wu ZB (2003) Application of aquatic plants in sewage treatment and water quality improvement. Chin Bull Bot 6(20):641–647 (in Chinese)

    Google Scholar 

  • Hu M, Wang XH, Wen XH, Xia Y (2012) Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour Technol 117:72–79

    Article  CAS  Google Scholar 

  • Jang JD, Barford JP, Renneberg R (2004) Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system. Biosens Bioelectron 19:805–812

    Article  CAS  Google Scholar 

  • Jensen PR, Lauro FM (2008) An assessment of actinobacterial diversity in the marine environment. Antonie Van Leeuwenhoek 94:51–62

    Article  CAS  Google Scholar 

  • Johansson BC, Howard G (1976) Inorganic nitrogen assimilation by the photosynthetic bacterium Rhodopseudomonas capsulate. J Bacteriol 28(2):683–688

    Google Scholar 

  • Kim TS, Kim HS, Kwon S, Park HD (2011) Nitrifying bacterial community structure of a full-scale integrated fixed-film activated sludge process as investigated by pyrosequencing. J Microbiol Biotechnol 21(3):293–298

    CAS  Google Scholar 

  • Li WF, Zhang XP, Song WH, Deng B, Liang Q, Fu LQ, Zheng JJ, Wang Y, Yu DY (2012) Effects of Bacillus preparations on immunity and antioxidant activities in grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 38(6):1585–1592

    Article  CAS  Google Scholar 

  • Lin X, Feng Y, Zhang H, Chen R, Wang J, Zhang J, Chu H (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46(11):5764–5771

    Article  CAS  Google Scholar 

  • Lu H, Zhang G, Dai X, He C (2010) Photosynthetic bacteria treatment of synthetic soybean wastewater: direct degradation of macromolecules. Bioresour Technol 101(19):7672–7674

    Article  CAS  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12(8):2165–2179

    CAS  Google Scholar 

  • Masters RA, Madigan M (1983) Nitrogen metabolism in the phototrophic bacteria Rhodocyclus purpureus and Rhodospirillum tenue. J Bacteriol 155(1):222–227

    CAS  Google Scholar 

  • Miura Y, Hiraiwa MN, Ito T, Itonaga T, Watanabe Y, Okabe S (2007) Bacterial community structures in MBRs treating municipal wastewater: relationship between community stability and reactor performance. Water Res 41(3):627–637

    Article  CAS  Google Scholar 

  • Nagadomi H, Hiromitsu T, Takeno K, Watanabe M, Sasaki K (1999) Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads. J Biosci Bioeng 87:189–193

    Article  CAS  Google Scholar 

  • Nagadomi H, Kitamura T, Watanabe M, Sasaki K (2000) Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria. Biotechnol Lett 22(17):1369–1374

    Article  CAS  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14

    Article  CAS  Google Scholar 

  • Nikoskelainen S, Ouwehand A, Salminen S, Bylund G (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (LactoBacillus rhamnosus). Fish Shellfish Immunol 15:443–452

    Article  CAS  Google Scholar 

  • Nora’aini A, Wahab MA, Jusoh A, Hasan MR, Ghazali N, Kamaruzaman K (2005) Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane. Desalination 185:317–326

    Article  Google Scholar 

  • Oerther DB, De los Reyes FL, De los Reyes MF, Raskin L (2001) Quantifying filamentous microorganisms in activated sludge before, during, and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining. Water Res 35(14):3325–3336

    Article  CAS  Google Scholar 

  • O’Sullivan LA, Fuller KE, Thomas EM, Turley CM, Fry JC, Weightman AJ (2004) Distribution and culturability of the uncultivated ‘AGG58 cluster’ of the Bacteroidetes phylum in aquatic environments. FEMS Microbiol Ecol 47(3):359–370

    Article  Google Scholar 

  • Peralta AL, Matthews JW, Kent AD (2010) Microbial community structure and denitrification in a wetland mitigation bank. Appl Environ Microbiol 76:4207–4215

    Article  CAS  Google Scholar 

  • Pfennig N (1967) Photosynthetic bacteria. Annu Rev Microbiol 21:285–324

    Article  CAS  Google Scholar 

  • Pfennig N, Truper HG (1974) The photosynthetic bacteria. In: Buchanan RE, Gibson NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 24–75

    Google Scholar 

  • Qi ZZ, Zhang XH, Boon N, Bossier P (2009) Probiotics in aquaculture of China-current state, problems and prospect. Aquaculture 290:15–21

    Article  Google Scholar 

  • Roberts SB, Hauser L, Seeb LW, Seeb JE (2012) Development of genomic resources for Pacific Herring through targeted transcriptome pyrosequencing. PLoS One 7(2):e30908

    Article  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    CAS  Google Scholar 

  • Sabaty M, Schwintner C, Cahors S, Richaud P, Verméglio A (1999) Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp.denitrificans IL106. J Bacteriol 181(19):6028–6032

    CAS  Google Scholar 

  • Sahu MK, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L (2008) Probiotics in aquaculture: importance and future perspectives. Indian J Microbiol 48:299–308

    Article  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103(32):12115–12120

  • Song K, Lee SH, Kang H (2011) Denitrification rates and community structure of denitrifying bacteria in newly constructed wetland mesocosms. Eur J Soil Biol 47:24–29

    Article  CAS  Google Scholar 

  • Suzer C, Coban D, Kamaci HO, Saka Ş, Firat K, Otgucuoğlu Ö, Küçüksari H (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture 280(1–4):140–145

    Article  CAS  Google Scholar 

  • Takabatake H, Suzuki K, Ko IB, Noike T (2004) Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria. Bioresour Technol 95(2):151–158

    Article  CAS  Google Scholar 

  • Tosques IE, Kwiatkowski AV, Shi J, Shapleigh JP (1997) Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol 179:1090–1095

    CAS  Google Scholar 

  • Van Niel CB (1971) Techniques for the enrichment, isolation and maintenance of the photosynthetic bacteria. In: San Pietro A (ed) Methods in enzymology. Academic Press, London, pp 3–28

    Google Scholar 

  • Wang YB, Li JR, Lin JD (2008) Probiotics in aquaculture: challenges and outlook. Aquaculture 281:1–4

    Article  Google Scholar 

  • Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7(2):e30440

    Article  CAS  Google Scholar 

  • Xia Y, Kong YH, Nielsen PH (2007) In situ detection of protein-hydrolyzing microorganisms in activated sludge. FEMS Microbiol Ecol 60:156–165

    Article  CAS  Google Scholar 

  • Zhang XP, Fu LQ, Deng B, Liang Q, Zheng JJ, Sun JD, Zhu HY, Peng LS, Wang YB, Shen WY, Li WF (2013) Bacillus subtilis SC02 supplementation causes alterations of the microbial diversity in grass carp water. World J Microbiol Biotechnol 29(9):1645–1653

    Article  Google Scholar 

  • Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6:1415–1426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program, P. R. China (973 Program) 2009CB118705, Special Fund for Agro-scientific Research in the Public Interest, 201203083, and Nonprofit Technology and Application Research Program of Zhejiang Province Grant No. 2013C32068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Shen.

Additional information

Xiaoping Zhang, Miaoan Shu and Yibing Wang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Shu, M., Wang, Y. et al. Effect of photosynthetic bacteria on water quality and microbiota in grass carp culture. World J Microbiol Biotechnol 30, 2523–2531 (2014). https://doi.org/10.1007/s11274-014-1677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1677-1

Keywords

Navigation