Skip to main content
Log in

Vertical distribution of ammonia-oxidizing archaea (AOA) in the hyporheic zone of a eutrophic river in North China

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrification plays a significant role in the global nitrogen cycle, and this concept has been challenged with the discovery of ammonia-oxidizing archaea (AOA) in the environment. In this paper, the vertical variations of the diversity and abundance of AOA in the hyporheic zone of the Fuyang River in North China were investigated by molecular techniques, including clone libraries, phylogenetic analysis and real-time polymerase chain reaction. The archaeal amoA gene was detected in all sediments along the profile, and all AOA fell within marine group 1.1a and soil group1.1b of the Thaumarchaeota phylum, with the latter being the dominant type. The diversity of AOA decreased with the sediment depth, and there was a shift in AOA community between top-sediments (0–5 cm) and sub-sediments (5–70 cm). The abundance of the archaeal amoA gene (1.48 × 107 to 5.50 × 107 copies g−1 dry sediment) was higher than that of the bacterial amoA gene (4.01 × 104 to 1.75 × 10copies g−1 dry sediment) in sub-sediments, resulting in a log10 ratio of AOA to ammonia-oxidizing bacteria (AOB) from 2.27 to 2.69, whereas AOB outnumbered AOA in top-sediments with a low log10 ratio of (−0.24). The variations in the AOA community were primarily attributed to the combined effect of the nutrients (ammonium-N, nitrate-N and total organic carbon) and oxygen in sediments. Ammonium-N was the major factor influencing the relative abundance of AOA and AOB, although other factors, such as total organic carbon, were involved. This study helps elucidate the roles of AOA and AOB in the nitrogen cycling of hyporheic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auguet JC, Nomokonova N, Camarero L, Casamayor EO (2011) Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol 77(6):1937–1945

    Article  CAS  Google Scholar 

  • Beman JM, Francis CA (2006) Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl Environ Microbiol 72(12):7767–7777

    Article  CAS  Google Scholar 

  • Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Micribiol Ecol 35(3):267–275

    Article  CAS  Google Scholar 

  • Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker MAD, Arp D (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bcateriol 185(9):2759–2773

    Article  CAS  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11(4):265–270

    Google Scholar 

  • Clilverd HM, Jones JRJB, Kielland K (2008) Nitrogen retention in the hyporheic zone of a glacial river in interior Alaska. Biogeochemistry 88(1):31–46

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, Callaghan MO, Bowatte S, He JZ (2010) Ammonia-oxidizing bactera and archaea grow under contrasting soil nitrogen conditions. FEMS Micribiol Ecol 72(3):386–394

    Article  CAS  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Mzrzorati M, Verstraste W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archea. FEMS Microbiol Rev 33(5):855–869

    Article  CAS  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320(5879):1034–1039

    Article  CAS  Google Scholar 

  • Feris KP, Ramsey PW, Gibbons SM, Frazar C, Rillig MC, Moore JN, Gannon JE, Holben WE (2009) Hyporheic microbial community development is a sensitive indicator of metal contamination. Environ Sci Technol 43(16):6158–6163

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102(41):14683–14688

    Article  CAS  Google Scholar 

  • Franken RJM, Storey RG, Williams DD (2001) Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 444(1–3):183–195

    Article  CAS  Google Scholar 

  • Gao JF, Luo X, Wu GX, Li T, Peng YZ (2013) Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants. Bioresour Technol 138:285–296

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296

    Article  CAS  Google Scholar 

  • He JZ, Zheng YM, Qu JH (2009) Soil environmental micro-interfaces and pollution control. Acta Sci Circumst 29(1):21–27

    CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9(9):2364–2374

    Article  CAS  Google Scholar 

  • Heck JKL, Belle GV, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56(6):1459–1461

    Article  Google Scholar 

  • Herrmann M, Saunders AM, Schramm A (2008) Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl Environ Microbiol 74(10):3279–3283

    Article  CAS  Google Scholar 

  • Herrmann M, Saunders AM, Schramm A (2009) Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Appl Environ Microbiol 75(10):3127–3136

    Article  CAS  Google Scholar 

  • Herrmann M, Scheibe A, Avrahami S, Kusel K (2011) Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosystems. Appl Environ Microbiol 77(5):1896–1899

    Article  CAS  Google Scholar 

  • Huang S, Chen C, Wu YY, Wu QH, Zhang RD (2011) Characterization of depth-related bacterial communities and their relationships with the environmental factors in the river sediments. World J Microbiol Biotechnol 27(11):2655–2664

    Article  CAS  Google Scholar 

  • Konneke M, Bernhard AE, Torre JRDL, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058):543–546

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809

    Article  CAS  Google Scholar 

  • Limpiyakorn T, Furhacker M, Haberl R, Chodanon T, Srithep P, Sonthiphand P (2013) AmoA-encoding archaea in wastewater treatment plants: a review. Appl Microbiol Biotechnol 97(4):1425–1439

    Article  CAS  Google Scholar 

  • Liu ZH, Huang SB, Sun GP, Xu ZC, Xu MY (2011) Diversity and abundance of ammonia-oxidizing archaea in the Dongjiang River, China. Microbiol Res 166(5):337–345

    Article  CAS  Google Scholar 

  • Lu L, Jia ZJ (2013) Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environ Microbiol 15(6):1795–1809

    Article  CAS  Google Scholar 

  • Mackenzie R, Barros JA, Martinez MA (2011) Characterization of aerobic heterotrophic bacteria in cold and nutrient-poor freshwater ecosystems. World J Microbiol Biotechnol 27(11):2499–2504

    Article  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, Torre JRDL, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461(7266):976–979

    Article  CAS  Google Scholar 

  • Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, Delong EF (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9(5):1162–1175

    Article  CAS  Google Scholar 

  • Mosier AC, Francis AC (2008) Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 10(11):3002–3016

    Article  CAS  Google Scholar 

  • Mullins TD, Britschgi TB, Krest RL, Giovannoni SJ (1995) Genetic comparsions reveal the same unkonwn bacterial lineages in Altantic and Pacific bacterioplankton communities. Limnol Oceanogr 40(1):148–158

    Article  CAS  Google Scholar 

  • Murray AE, Wu KY, Moyer CL, Karl DM, DeLong EF (1999) Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean. Aquat Microb Ecol 18:263–273

    Article  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing Archaea and bacteria. Environ Microbiol 10(11):2966–2978

    Article  CAS  Google Scholar 

  • Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Envion Microbiol 70(2):1008–1016

    Article  CAS  Google Scholar 

  • Park HD, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72(8):8642–8647

    Article  Google Scholar 

  • Pei YS, Yang ZF, Tian BH (2010a) Nitrate removal by microbial enhancement in a riparian wetland. Bioresour Technol 101:5712–5718

    Article  CAS  Google Scholar 

  • Pei YS, Wang J, Wang ZY, Yang ZF (2010b) Characteristics of ammonia-oxidizing and denitrifying bacteria at the river-sediment interface. Procedia Environ Sci 2:1988–1996

    Article  Google Scholar 

  • Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci USA 108(10):4170–4175

    Article  CAS  Google Scholar 

  • Purkhold U, Pommerening-Roser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66(12):5368–5382

    Article  CAS  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62(2):142–160

    Article  CAS  Google Scholar 

  • Robertson AL, Wood PJ (2010) Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundam Appl Limnol 176(4):279–289

    Article  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63(12):4704–4712

    CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506

    Article  CAS  Google Scholar 

  • Sheibley RW, Jackman AP, Duff JH, Frank J, Triska FJ (2003) Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN. Adv Water Resour 26(9):977–987

    Article  CAS  Google Scholar 

  • Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10(6):1601–1611

    Article  CAS  Google Scholar 

  • Sims A, Horton J, Gajaraj S, Mclntosh S, Miles RJ, Mueller R, Reed R, Hu ZQ (2012) Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands. Water Res 46(13):4121–4129

    Article  CAS  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborn AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nifA), and their transcripts in estuarine sediments. Appl Environ Microbiol 73(11):3612–3622

    Article  CAS  Google Scholar 

  • Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, Nys RD, Wagner M, Taylor MW (2008) Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol 10(4):1087–1094

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and canodraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Teske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl DA (1994) Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176(21):6623–6630

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  Google Scholar 

  • Tsuboi S, Amemiya T, Seto K, Itoh K, Rajendran N (2013) The ecological roles of bacterial populations in the surface sediments of coastal lagoon envrionments in Japan as reveraled by quantification and qualification of 16S rDNA. World J Microbiol Biotechnol 29(5):759–774

    Article  Google Scholar 

  • Wang ZY, Qi Y, Wang J, Pei YS (2012) Chararacheristics of areobic and anareobic ammonium-oxidizing bacteria in the hyporheic zone of a contaminated river. World J Microbiol Biotechnol 28(9):2801–2811

    Article  CAS  Google Scholar 

  • Ward JV, Palmer MA (1994) Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems. Hydrobiologia 287(1):147–156

    Article  Google Scholar 

  • Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Litter H (2007) Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl Environ Microbiol 73(1):259–270

    Article  CAS  Google Scholar 

  • Winogradsky S (1890) Recherches sur les organismes de al nitrification. Ann Inst Pastur 4:213–331

    Google Scholar 

  • Wu YC, Xiang Y, Wang JJ, Zhong JC, He JZ, Wu QLL (2010) Heterogeneity of archaeal and bacterial ammonia-oxidizing communities in Lake Taihu, China. Environ Microbiol Rep 2(4):569–576

    Article  CAS  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, Bleijswijk JV, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103(33):12317–12322

    Article  CAS  Google Scholar 

  • Yang YF, Wu LW, Lin QY, Yuan MT, Xu DP, Yu H, Hu YG, Duan JC, Li XZ, He ZL, Xue K, Nostrand JV, Wang SP, Zhou JZ (2013) Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob Chang Biol 19(2):637–648

    Article  Google Scholar 

  • Yao HY, Gao YM, Nicol GW, Campbell CD, Prosser JI, Zhang LM, Han WY, Singh BK (2011) Links between ammonia oxidizer community structure, abundance and nitrification potential in acidic soils. Appl Environ Microbiol 77(13):4618–4625

    Article  CAS  Google Scholar 

  • Ye L, Zhang T (2011) Ammonia-oxidizing bacteria dominates over ammonia-oxidizing archaea in a saline nitrification reactor under low DO and high nitrogen loading. Biotechnol Bioeng 108(11):2544–2552

    Article  CAS  Google Scholar 

  • Zhang CLL, Ye Q, Huang ZY, Li WJ, Chen JQ, Song ZQ, Zhao WD, Bagwell C, Inskeep WP, Ross C, Gao L, Wiegel J, Romanek CS, Shock E, Hedlund BP (2008) Global occurrence of archaeal amoA genes in terrestrial hop springs. Appl Environ Microbiol 74(20):6417–6426

    Article  CAS  Google Scholar 

  • Zhang LM, Wang M, Prosser JI, Zheng YM, He JZ (2009) Altitude ammonia-oxidizing bacteria and Archaea in soil of Mount Everest. FEMS Microbiol Ecol 70(2):208–217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (51179008 and 51278055) and the National Key Special Subjects on Water Pollution Control (2012ZX07203-003-R06). The authors are grateful to Bai Leilei, Liang Jincheng, and Liu Juanfeng for their kindly assistance in sampling and chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansheng Pei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wang, Z., Huang, C. et al. Vertical distribution of ammonia-oxidizing archaea (AOA) in the hyporheic zone of a eutrophic river in North China. World J Microbiol Biotechnol 30, 1335–1346 (2014). https://doi.org/10.1007/s11274-013-1559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1559-y

Keywords

Navigation