Skip to main content
Log in

Identification and characterization of ethanol utilizing fungal flora of oil refinery contaminated soil

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The indigenous fungal flora of three oil refinery contaminated sites (Bharuch, Valsad and Vadodara) of India has been documented in the present investigation. A total seventy-five fungal morphotypes were isolated from these sites and out of them, only fifteen isolates were capable of utilizing ethanol (0–8 %; v:v) as a sole source of carbon and energy for growth. Ten percent ethanol was completely lethal for the growth of all the isolated fungus. Biochemical characterization of the potent ethanol utilizing fungal isolates was studied based on substrate utilization profiles using BIOLOG phenotype microarray plates. Based on the morphological characters and Internal Transcribed Spacer region of ribosomal DNA, the fungal isolates were identified as Fusarium brachygibbosum, Fusarium equiseti, Fusarium acuminatum, Pencillium citrinum, Alternaria tenuissima, Septogloeum mori, Hypocrea lixii, Aureobasidium sp., Penicillium sp., and Fusarium sp. Intra-species genetic diversity among Fusarium sp. was evaluated by whole genome analysis with repetitive DNA sequences (ERIC, REP and BOX) based DNA fingerprinting. It was found that these fungus use alcohol dehydrogenase and acetaldehyde dehydrogenase enzymes based metabolism pathway to utilize ethanol for their growth and colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cerniglia CE, White GL, Heflich RH (1985) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Arch Microbiol 143:105–110

    Article  CAS  Google Scholar 

  • Chaillan F, Le Flèche A, Bury E, Phantavong Y, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810

    Google Scholar 

  • Dhote M, Juwarkar A, Kumar A, Kanade GS, Chakrabarti T (2010) Biodegradation of chrysene by the bacterial strains isolated from oily sludge. World J Microbiol Biotechnol 26:329–335

    Article  CAS  Google Scholar 

  • Ewaze JO, Summerbell RC, Scott JA (2008) Ethanol physiology in the warehouse-staining fungus, Baudoinia compniacensis. Mycological Res 112:1373–1380

    Article  CAS  Google Scholar 

  • Felenbok B, Flipphi M, Nikolaev I (2001) Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog Nucleic Acid Res Mol Biol 69:149–204

    CAS  Google Scholar 

  • Flipphi M, Kocialkowska J, Felenbok B (2003) Relationships between the ethanol utilization (alc) pathway and unrelated catabolic pathways in Aspergillus nidulans. Eur J Biochem 270:3555–3564

    Article  CAS  Google Scholar 

  • Hussein AA, Al-Janabi S (2009) Degradation of ethanol by two species of dermatophytes: Trichophyton mentagrophytes and Epidermophyton floccosum. Global J Biotechnol Biochem 4:148–151

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of Protein Molecules. In: Munro HN (ed) Mammalian Protein Metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kumar S, Singh R, Kashyap PL, Srivastava AK (2013) Rapid detection and quantification of Alternaria solani in tomato. Sci Hortic 151:184–189

    Article  CAS  Google Scholar 

  • Malarczyk E, Jarosz-Wilkóazka A, Kochmanska-Rdest J (2003) Effect of low doses of guaiacol and ethanol on enzymatic activity of fungal cultures. Nonlinearity Biol Toxicol Med 1:167–178

    Article  CAS  Google Scholar 

  • Meza JC, Auria R, Lomascolo A, Sigoillot J, Casalot L (2007) Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3. Enzyme Microb Technol 41:162–168

    Article  CAS  Google Scholar 

  • Mishra P, Prasad R (1989) Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 30:294–298

    Article  CAS  Google Scholar 

  • Nwachukwu IN, Lbekwe VI, Nwabueze RN, Anyanwu BN (2006) Characterization of palm wine yeast isolates for industrial utilization. Afr J Biotechnol 5:1725–1728

    CAS  Google Scholar 

  • Pirnie-Fisker EF, Woertz JR (2007) Degradation of ethanol plant by-products by Exophiala lecanii-corni and Saccharomyces cerevisiae in batch studies. Appl Microbiol Biotechnol 74:902–910

    Article  CAS  Google Scholar 

  • Pollack JH, Hashimoto T (1985) Ethanol-induced germ tube formation in Candida albicans. J General Microbiol 131:3303–3310

    CAS  Google Scholar 

  • Postma E, Verduyn C, Scheffers WA, Van Dijken JP (1989) Enzymic analysis of the crab tree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477

    CAS  Google Scholar 

  • Rademaker JLW, de Bruijn FJ (1997) Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer-assisted pattern analysis. In: Caetano-Anolles G, Gresshoff PM (eds) DNA Markers: Protocols. Application and Overviews, New York, pp 151–171

    Google Scholar 

  • Robinovich ML, Bolobova AV, Vasil’chenko LG (2004) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol 40:1–17

    Article  Google Scholar 

  • Russell DW, Smith M, Williamson VM, Young ET (1983) Nucleotide sequence of the yeast alcohol dehydrogenase II gene. J Biological Chem 258:2674–2682

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Scott JA, Untereiner WA, Ewaze JO, Wong B, Doyle D (2007) Baudoinia, a new genus to accommodate Torula compniacensis. Mycologia 99:592–601

    Article  Google Scholar 

  • Sevilla MJ, Landajuela L, Urubru F (1983) The effect of alcohols on the morphology of Aureobasidium pullulans. Curr Microbiol 9:169–172

    Article  CAS  Google Scholar 

  • Srujana K, Khan AB (2012) Isolation and characterisation of polycyclic aromatic hydrocarbon degrading soil microbes from automobile workshop sediments. J Environ Sci Technol 5:74–83

    Google Scholar 

  • Venturini ME, Blanco D, Oria R (2002) In vitro antifungal activity of several antimicrobial compound against Penicillium expansum. J Food Prot 65:834–839

    CAS  Google Scholar 

  • Venugopal T, Sharma A, Satapathy S, Ramesh A, Gajendra Babu MK (2012) Experimental study of hydrous ethanol gasoline blend (E10) in a four stroke port fuel-injected spark ignition engine. Int J Energy Res. doi:10.1002/er.1957

    Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Zanon JP, Peres MFS, Gattás EAL (2007) Colorimetric assay of ethanol using alcohol dehydrogenase from dry baker’s yeast. Enzym Microb Tech 40(3):466–470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Indian Council of Agriculture Research (ICAR) by a network project “Application of Microorganisms in Agriculture and Allied Sectors” (AMAAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudheer Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A.K., Singh, P., Singh, R.K. et al. Identification and characterization of ethanol utilizing fungal flora of oil refinery contaminated soil. World J Microbiol Biotechnol 30, 705–714 (2014). https://doi.org/10.1007/s11274-013-1497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1497-8

Keywords

Navigation